Chapter 13

EMT1150 Introduction to Circuit Analysis

Department of Computer Engineering Technology

Fall 2018
Prof. Rumana Hassin Syed

Chapter13 Sinusoidal waveform

- Identify sinusoidal waveform
- Characteristics of sinusoidal wave
- Average value, effective value(rms)

AC vs. DC

DC Source

- AC: Alternating current

- DC: Direct current
- Symbol:

Thomas Edison developed DC power system in 1882

- But AC power system prevailed because of its lower cost and higher transmission efficiency
- Alternating means the waveform alternates between two prescribed levels in a set time sequence.
- Since sinusoidal ac voltage is widely used in the field, it is commonly called ac voltage without confusion.

Sinusoidal

Square wave

Triangular wave

AC sinusoidal waveform characteristics

 -- Waveform: voltage or current are plotted as function of time.
- Instantaneous value: the magnitude at any instant of time, using lower case, $v(t)$
- Peak amplitude: The maximum value of a waveform as measured from its average value, denoted by uppercase letter, E_{m}

- Peak value: The maximum instant value of function as measured from zero volt.
- Peak-to-peak value: the full voltage range between positive peak to negative peak of waveform, denoted as V_{p-p}
- Cycle: a portion of waveform without any repeat
- Period: the time of one cycle, denoted as T.
- Frequency (f) : The number of cycles that occur in 1 second, unit hertz(Hz).

$$
f=\frac{1}{T}
$$

Example1: (a). What is the peak value and peak-topeak value?
(b). What is the instant value at 0.3 s and 0.6 s ?
(c) What is the period of waveform, frequency? How many cycles are shown?

(c). $\mathrm{T}=0.4 \mathrm{~s}$, total 3.5 cycles are shown,

$$
f=\frac{1}{T}=\frac{1}{0.4 s}=2.5(\mathrm{~Hz})
$$

Example2: Find the frequency of the waveform.

$$
\mathrm{T}=20 \mathrm{~ms}
$$

$$
f=\frac{1}{T}=\frac{1}{20 m s}=50(\mathrm{~Hz})
$$

Average value

- Average of numbers
- Average of function

Average value $=\frac{\text { Algebraic sum of areas }}{\text { length of curve }}$
Average value $=\frac{\int_{a}^{b} f(x) d x}{\text { length of curve }}$

(a)

Example3: Find the average value of waveforms in one cvcle.

$$
A=\frac{10 \mathrm{~V} \times 1 \mathrm{~ms}-10 v \times 1 \mathrm{~ms}}{2 \mathrm{~ms}}=0(\mathrm{~V})
$$

$$
A=\frac{14 V \times 1 m s-6 v \times 1 m s}{2 m s}=4(V)
$$

When the average value isn't zero, then the waveform has DC offset/ DC shift.

Example4: Find the average value of \sin wave in half cycle and one cycle.

$$
\begin{gathered}
A=\int_{0}^{\pi} A_{m} \sin (\alpha) d \alpha \\
=A_{m}[-\cos (\alpha)]_{0}^{\pi} \\
=-A_{m}(\cos (\pi)-\cos (0)) \\
=2 A_{m}
\end{gathered}
$$

$A=2 A_{m}-2 A_{m}=0$

Example5: Find the average value of waveform.

$$
\mathrm{V}_{\mathrm{av}}=(-16 \mathrm{mV}-2 \mathrm{mV}) / 2-2=-7(\mathrm{mV})
$$

Effective value(root-meansquare value)

- Effective value of $A C$ is the amount of AC that produces the same heating effect as an equal amount of DC.

$$
\begin{aligned}
& P_{a c}=i_{a c}^{2} R=\left(I_{m} \sin (\varpi t)\right)^{2} R=I_{m}^{2} \sin ^{2}(\varpi t) R \\
= & I_{m}^{2}\left[\frac{1}{2}(1-\cos (2 \varpi t)] R=\frac{I_{m}^{2} R}{2}-\frac{I_{m}^{2} R}{2} \cos (2 \varpi t)\right.
\end{aligned}
$$

$$
P_{a v(a c)}=\frac{I_{m}^{2} R}{2}
$$

$$
\frac{I_{m}^{2} R}{2}=I_{d c}^{2} R
$$

$$
\begin{aligned}
& P_{a v(a c)}=P_{d c} \\
& I_{d c}=\frac{I_{m}}{\sqrt{2}}=0.707 I_{m}
\end{aligned}
$$

The equivalent dc value of a sinusoidal current or voltage (root-mean-square value, rms value) is 0.707 of its peak value.

$$
I_{r m s}=\frac{I_{m}}{\sqrt{2}}=0.707 I_{m}
$$

$$
V_{r m s}=\frac{V_{m}}{\sqrt{2}}=0.707 V_{m}
$$

$$
I_{m}=\sqrt{2} I_{r m s}=1.414 I_{m} \quad V_{m}=\sqrt{2} V_{r m s}=1.414 V_{m}
$$

Example6: Find the peak value of applied ac

 voltage and current to have the same power as the dc source.
(a)

(b)

$$
I_{d c}=\frac{P_{d c}}{V_{d c}}=\frac{3.6 \mathrm{~W}}{120 \mathrm{~V}}=30(\mathrm{~mA})=I_{r m s}
$$

$$
V_{d c}=V_{r m s}=120 \mathrm{~V}
$$

$$
I_{m}=\sqrt{2} I_{r m s}=(1.414)(30 \mathrm{~mA})=42.42(\mathrm{~mA})
$$

$$
V_{m}=\sqrt{2} V_{r m s}=(1.414)(120 \mathrm{~V})=169.68(\mathrm{~V})
$$

