Chapter 9 EMT1150 Introduction to Circuit Analysis

Department of Computer Engineering Technology

> Fall 2018 Prof. Rumana Hassin Syed

Review

Series-parallel circuit

- Reduce and Return Approach
- Block Diagram Approach
- Ladder Network
- Basic principle
 - Have big picture first
 - Redraw the circuit if needed

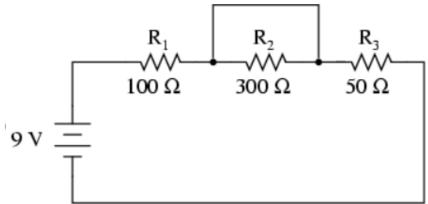
When circuit has multiple sources, hard to solve directly

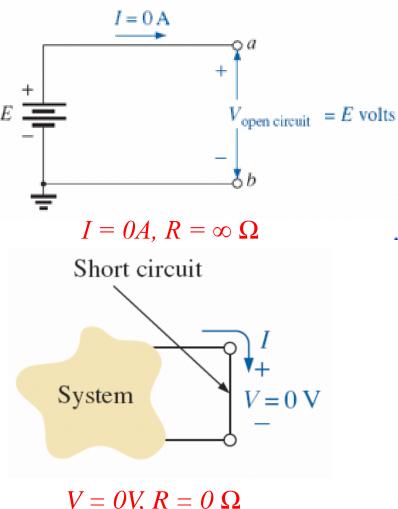
Chapter9 Network Theorems

Superposition theoremThévenin's Theorem

Open circuit and short circuit

- Open circuit: two
 isolated terminals are
 not connected by an
 element of any kind.
- Short circuit: a wire is direct connected between two terminals of a network.





Superposition theorem

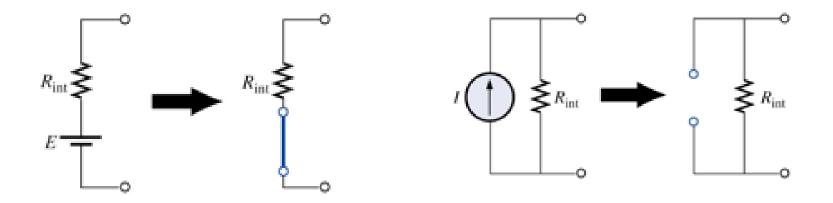
- The superposition theorem can be used to find the solution to networks with two or more sources that are not in series or parallel.
- The current through, or voltage across, an element in a linear bilateral network is equal to the algebraic sum of the current or voltages produced independently by each source.

Procedure

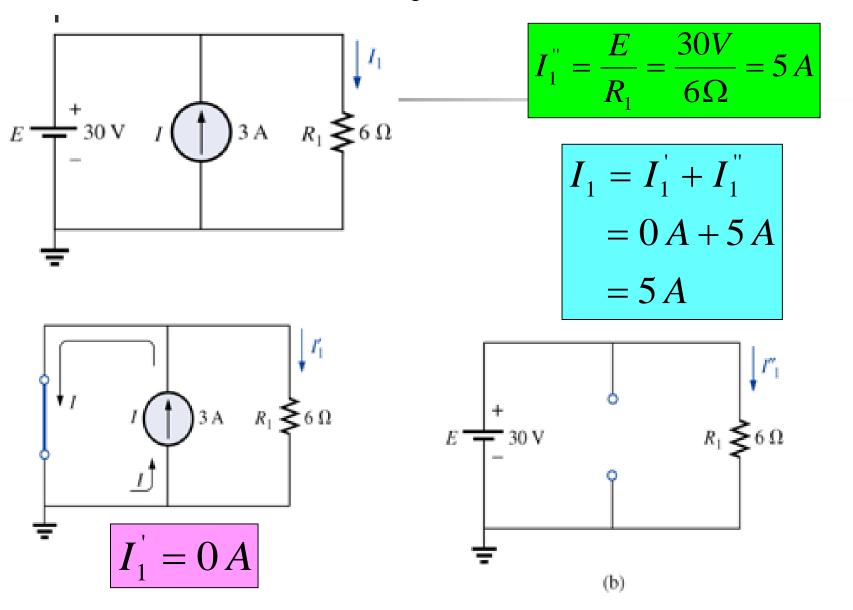
- Identify each voltage source and current source
- Redraw the circuit with only one selected source, kill other sources, calculate the current or voltage generated from this single source
- Repeat this process for each source.
- Sum of the current or voltages produced independently by each source.

How to kill a source?

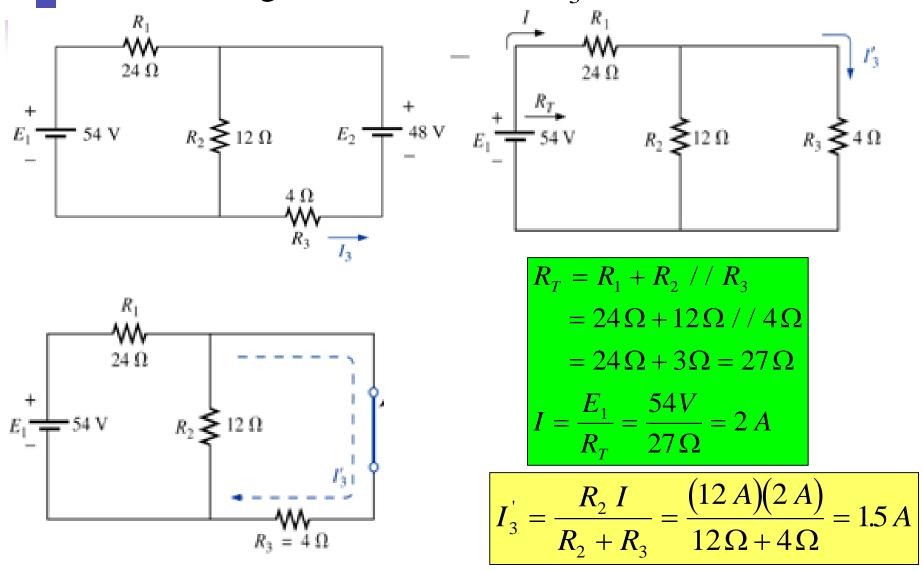
If there are internal resistances associate with the source, they must remain in the network.

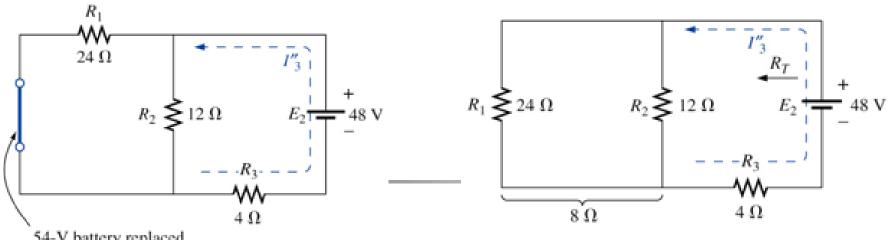


Example1: Determine I₁ for the network



Example 2: Using superposition, determine the current through the 4- Ω resistor, I₃.





54-V battery replaced by short circuit

$$R_T = R_3 + R_1 / R_2 = 4\Omega + 24\Omega / 12\Omega = 4\Omega + 8\Omega = 12\Omega$$
$$I_3'' = \frac{E_2}{R_T} = \frac{48V}{12\Omega} = 4A$$

$$I_3 = I_3^{"} - I_3^{'} = 4 A - 1.5 A = 2.5 A$$

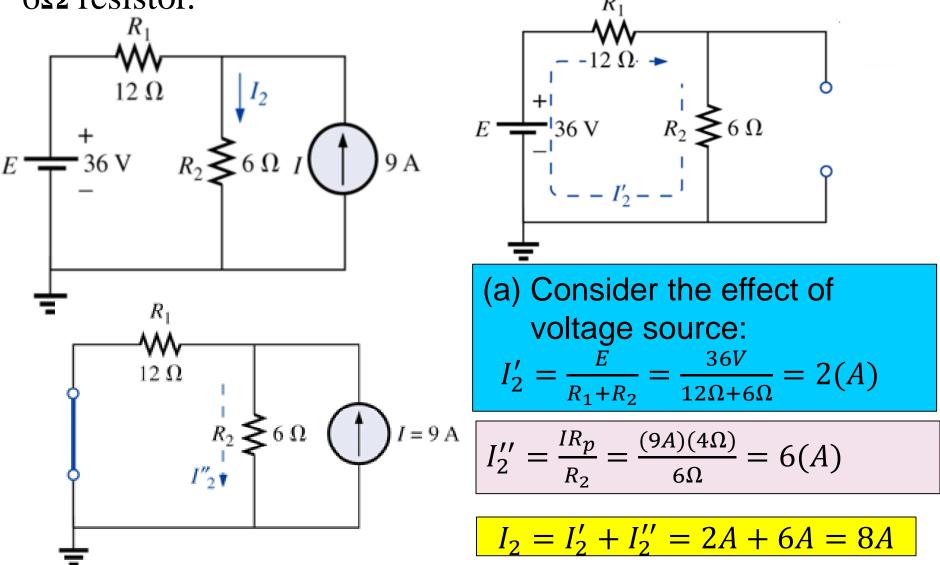
(direction of $I_3^{"}$)

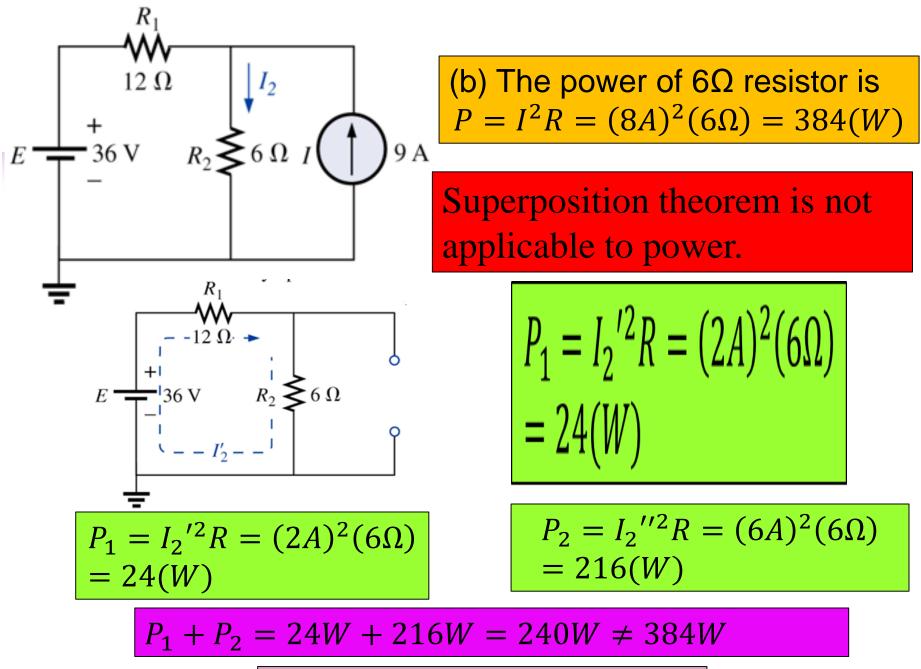
$$I'_{3} = 1.5 \text{ A}$$

$$4 \Omega$$

$$I''_{3} = 4 \text{ A}$$

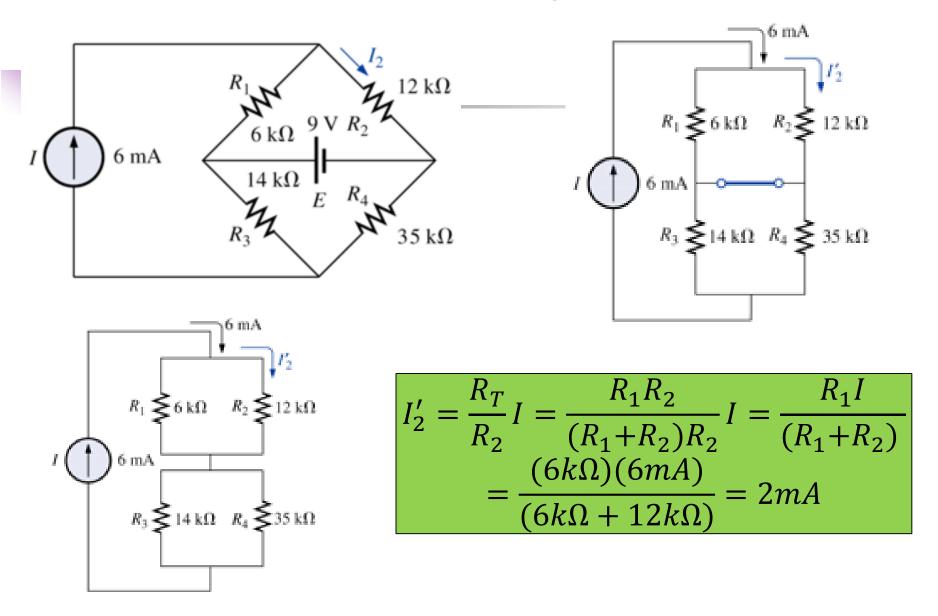
Example 3: (a). Using superposition, find the current through the 6- Ω resistor. (b). Determine the power of 6Ω resistor.

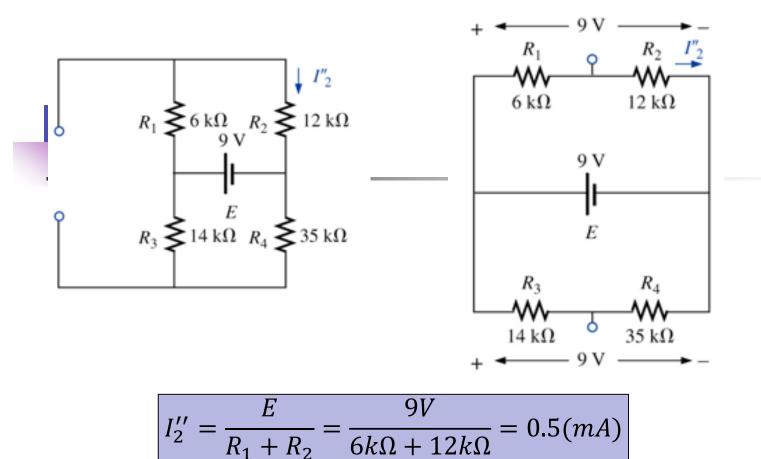




Because $(2A)^2 + (6A)^2 \neq (8A)^2$

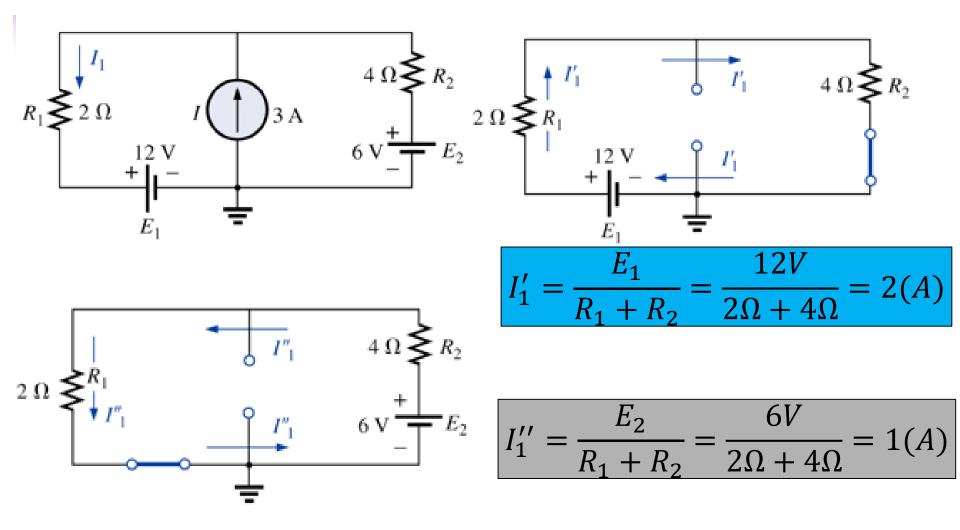
Example 4: Find the current through the $12-k\Omega$ resistor.

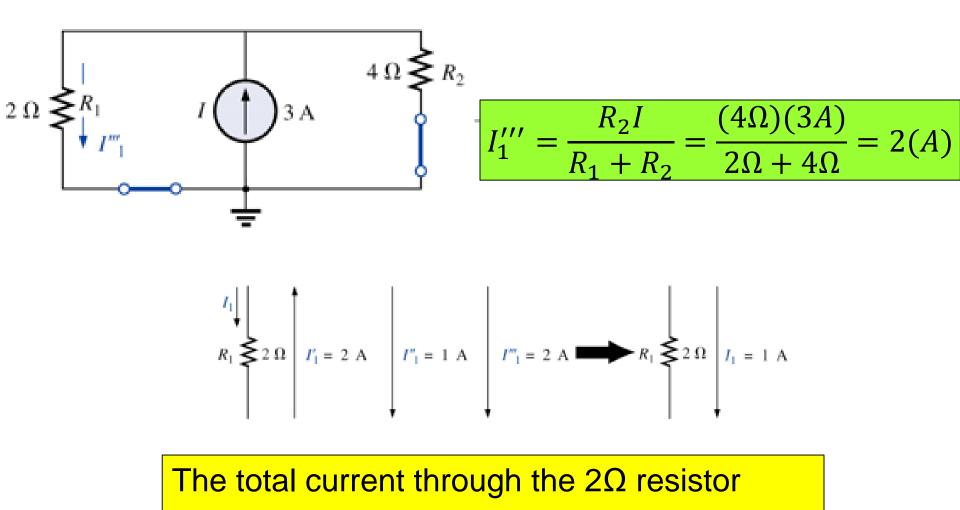




Since
$$I_2'$$
 and I_2'' have the same direction through R_2 ,
the desired current is the sum of the two:
 $I_2 = I_2' + I_2'' = 2mA + 0.5mA = 2.5mA$

Example5: Find the current through the 2- Ω resistor of the network.

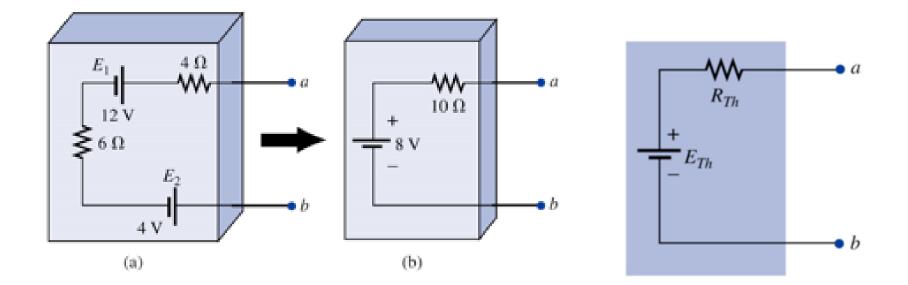




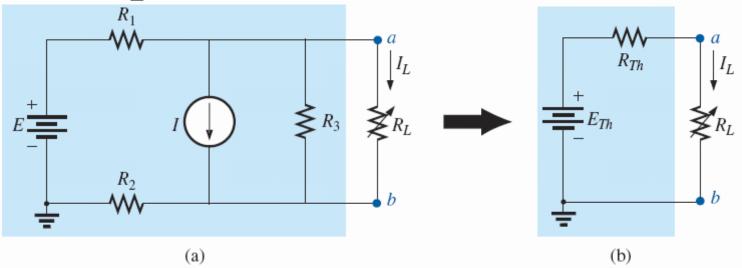
 $I_1 = -I_1' + I_1'' + I_1''' = -2A + 1A + 2A = 1(A)$

Thévenin's Theorem

Thevenin's Theorem states that "Any linear circuit containing several voltages and resistances can be replaced by just one single voltage in series with a single resistance connected across the load".



- Reduce the number of components required to establish the same characteristics at the output terminals.
- Investigate the effect of changing a particular component on the behavior of a network without having to analyze the entire network after each change.



Procedures

1. Remove that portion of the network where the Thévenin equivalent circuit is found.

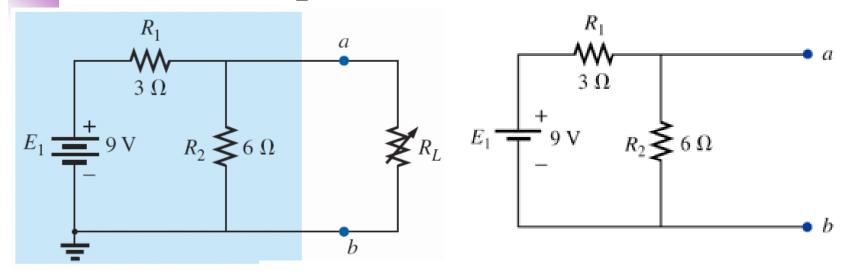
2. Mark the terminals of the remaining two-terminal network.

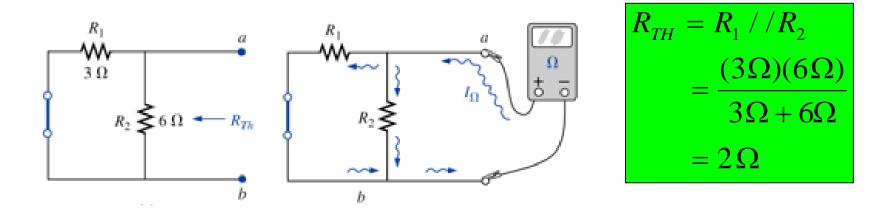
3. Calculate R_{Th} by first setting all sources to zero and then finding the resultant resistance between the two marked terminals.

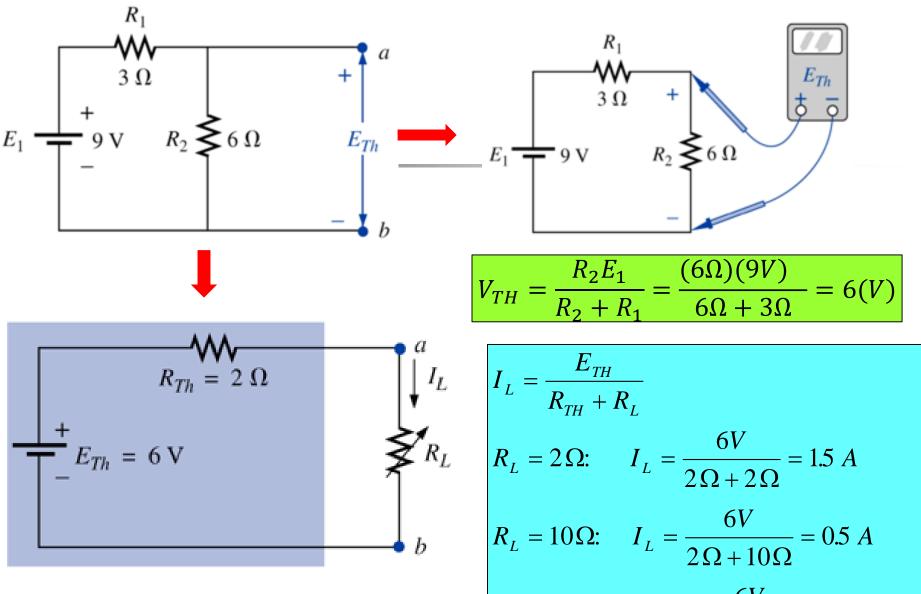
4. Calculate E_{Th} by first returning all sources to their original position and finding the open-circuit voltage between the marked terminals.

5. Draw the Thévenin equivalent circuit with the portion of the circuit previously removed replaced between the terminals of the equivalent circuit.

Example6: Find the Thevenin equivalent circuit for the network in the shaded area of the network. Then find the current through R_L for values of 2Ω , 10Ω , and 100Ω .

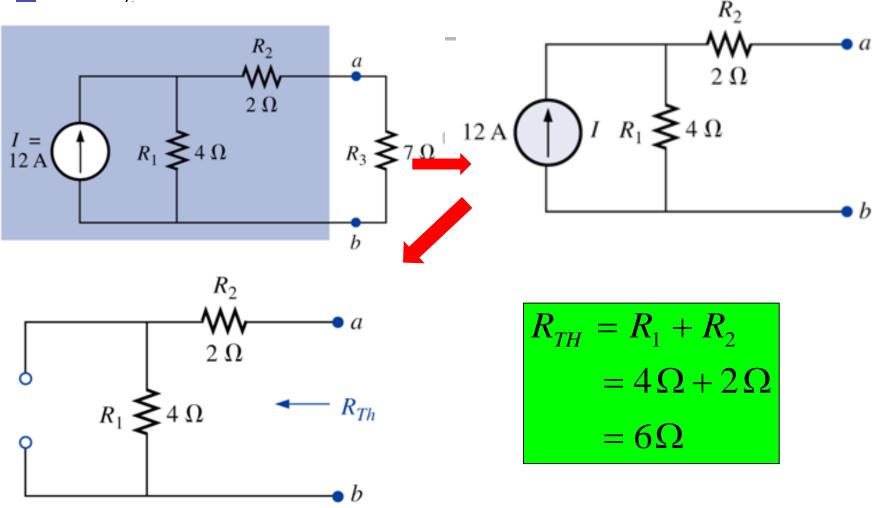


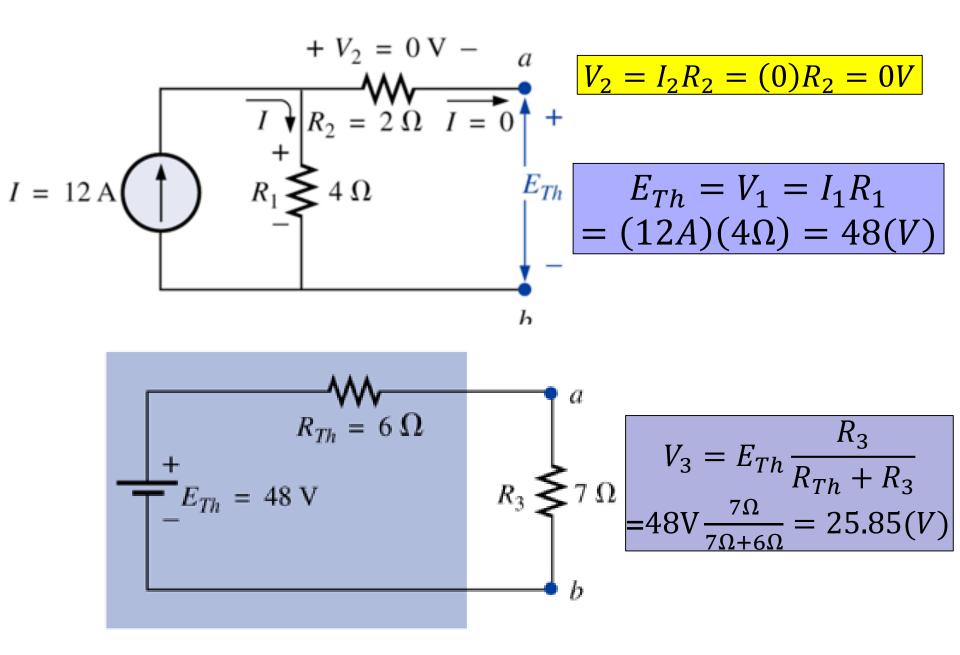




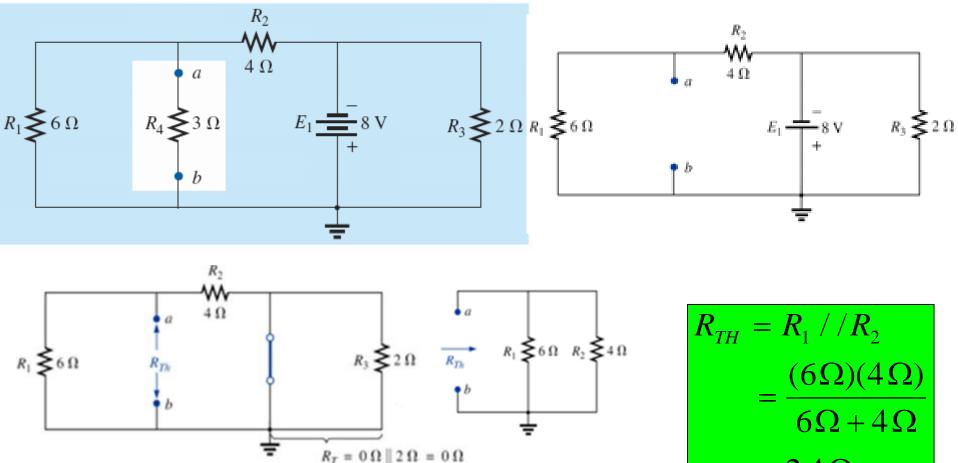
$$R_L = 100\Omega$$
: $I_L = \frac{6V}{2\Omega + 100\Omega} = 0.059$

Example7: Find the Thevenin equivalent circuit for the network in the shaded area. Calculate the voltage on R_3

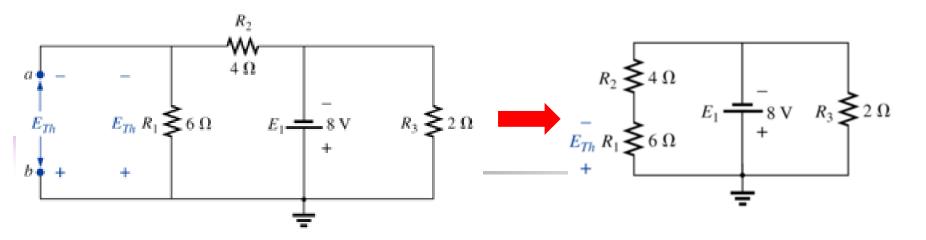


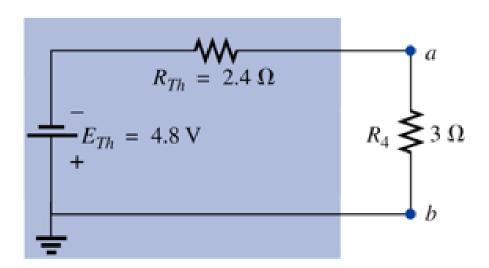


Example8: Find the Thevenin equivalent circuit for the network in the shaded area of the network



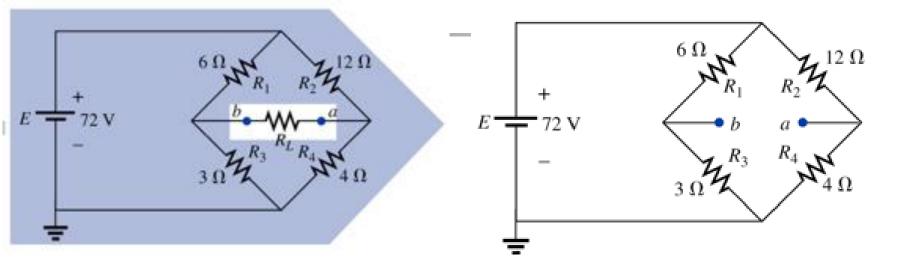
 $= 2.4 \Omega$

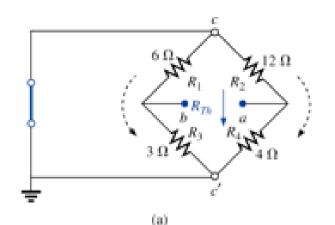




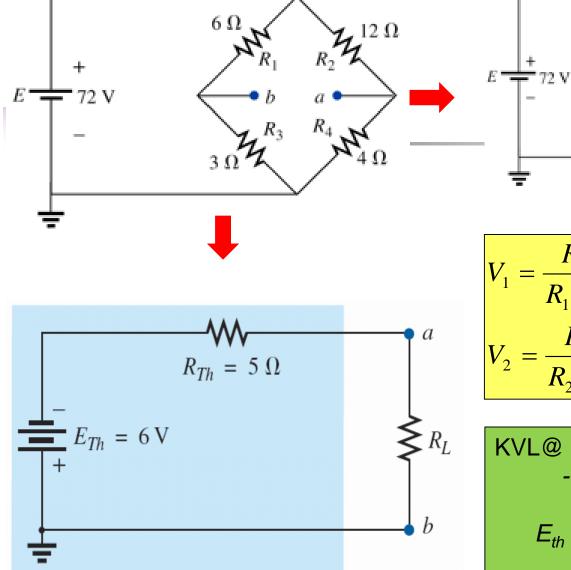
$$E_{TH} = \frac{R_1 E_1}{R_1 + R_2}$$
$$= \frac{(6\Omega)(8V)}{6\Omega + 4\Omega}$$
$$= 4.8V$$

Example9: Find the Thevenin equivalent circuit for the network in the shaded area of the network





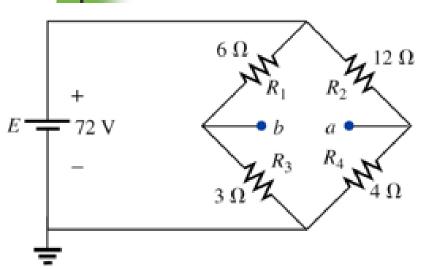
$$R_{TH} = R_1 / R_3 + R_2 / R_4$$
$$= 6\Omega / 3\Omega + 4\Omega / 12\Omega$$
$$= 2\Omega + 3\Omega = 5\Omega$$

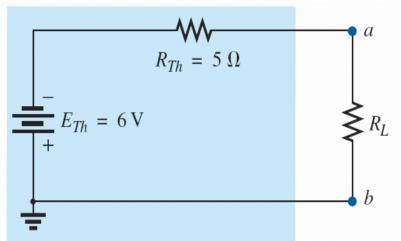


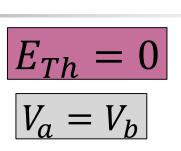
$$V_{1} = \frac{R_{1}E}{R_{1} + R_{3}} = \frac{(6\Omega)(72V)}{6\Omega + 3\Omega} = 48V$$
$$V_{2} = \frac{R_{2}E}{R_{2} + R_{4}} = \frac{(12\Omega)(72V)}{12\Omega + 4\Omega} = 54V$$

KVL@ CP - $V_1 + V_2 - E_{th} = 0$ $E_{th} = V_2 - V_1 = 54V - 48V = 6V$

Extend to bridge circuit







$$\frac{ER_1}{R_1 + R_3} = \frac{ER_2}{R_2 + R_4}$$

$$R_1 R_2 + R_1 R_4 = R_1 R_2 + R_2 R_3$$

$$R_1 R_4 = R_2 R_3$$

