Chapter 10

EMT1150 Introduction to Circuit Analysis

Department of Computer Engineering Technology

Fall 2018
Prof. Rumana Hassin Syed

Chapter10 Capacitors

- Introduction to Capacitors
- The Electric Field
- Capacitance
- Capacitors in Series and Parallel
- Transients in Capacitive Networks

Introduction

- Always compare with resistors
- Two-terminal device
- Symbol

Intro CNTD..

- Capacitor does not dissipate energy as does the resistor but store it.
Capacitor displays its true characteristics only when a change in the voltage or current is made in the network.

Electric field

- Electric filed/electrostatic field is a field of force generated by the electrical charges.
- It is represented by electric flux lines, which indicate the strength of the electric field at any point around any charged body.
- The denser the lines of flux, the stronger is the electric field.

Capacitor

A capacitor is constructed simply of two parallel conducting plates separated by insulating material.

- Insulating material is called dielectric material.

Electric field in capacitor

Note the fringing that occurs at the edges as the flux lines originating from the points farthest away from the negative plate strive to complete the connection

$$
\varepsilon=\frac{V}{d}
$$

E: Volt/m
 V: Volt
 d: m

(b)

Capacitance is a measure of a

 capacitor's ability to store charge on its plates.Unit: Farad (F)
A capacitor has a capacitance of 1 farad if 1 coulomb of charge is deposited on the plates by a potential difference of 1 volt cross the plates.

$\mathrm{C}=\operatorname{farad}(\mathrm{F})$
$\mathrm{Q}=$ coulombs (C)
$\mathrm{V}=$ volts (V)

Example1: If 40 V are applied across a $470 \mu \mathrm{~F}$ capacitor, find the charge on the ${ }^{-}$plates.

$$
Q=C V=(470 \mu F)(40 \mathrm{~V})=18.8(\mathrm{mC})
$$

Capacitance

The capacitance of any capacitor is due primarily to three factors:

- Permittivity (Dielectric material)
- Distance
- Area

- Permittivity is the measure of the resistance that is encountered when forming an electric field in a medium.

(a)

(b)

In general, permittivity of other materials can compare to the permittivity of vacuum.

$$
\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}
$$

Dielectric

ε_{r} (Average value)

Vacuum	1.0
Air	1.0006
Teflon	2.0
Rubber	3.0
Oil	4.0
Mica	5.0
Ceramics	$20-7500$

$$
C=\varepsilon_{0} \varepsilon_{r} \frac{A}{d}
$$

Example2: Determine the capacitance of each capacitor on the right side.

$$
\begin{aligned}
& \text { (a) } C=3(5 \mu \mathrm{~F}) \\
& =15(\mu \mathrm{~F})
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } \mathrm{C}=(0.1 \mu \mathrm{~F}) / 2 \\
& =0.05(\mu \mathrm{~F})
\end{aligned}
$$

$$
\begin{aligned}
& \text { (d) } \mathrm{C}=4 \times 5 \times \\
& (1000 \mathrm{pF}) /(1 / 8) \\
& =0.16(\mu \mathrm{~F})
\end{aligned}
$$

Example3:For the capacitor in the figure: a. Determine the capacitance.
b. Determine the electric field strength between the plates if 450 V are applied across the plates. c. Find the resulting charge on each plate.
(a). $C_{o}=\frac{\varepsilon_{o} A}{d}=\frac{\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)\left(0.01 \mathrm{~m}^{2}\right)}{1.5 \times 10^{-3} \mathrm{~m}}=59.0 \times 10^{-12} \mathrm{~F}$
(b) $. \varepsilon=\frac{V}{d}=\frac{450 \mathrm{~V}}{1.5 \times 10^{-3} \mathrm{~m}} \cong 300 \times 10^{3} \mathrm{~V} / \mathrm{m}$

$$
\begin{aligned}
& (d) . C=\frac{Q}{V} \\
& Q=C V=\left(59.0 \times 10^{-12}\right)(450 \mathrm{~V}) \\
& =26.550 \times 10^{-9} \mathrm{C}=26.55 n C
\end{aligned}
$$

Type of capacitors

- Fixed capacitor
- Electrolytic capacitors
- Ceramic (disc) capacitor
- Film/foil polyester capacitor
- Mica capacitors
- Oil-filled capacitor

- Variable capacitor

Capacitors in Series similar

Apply KVL to CP

$$
E=V_{1}+V_{2}+V_{3}
$$

$$
V=\frac{Q}{C}
$$

$$
\frac{Q_{T}}{C_{T}}=\frac{Q_{1}}{C_{1}}+\frac{Q_{2}}{C_{2}}+\frac{Q_{3}}{C_{3}} \quad Q_{T}=Q_{1}=Q_{2}=Q_{3}
$$

$$
\frac{1}{C_{T}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}
$$

$$
C_{T}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}
$$

Capacitors in parallel similar

Apply KVL to CPs

$$
E=V_{1}=V_{2}=V_{3}
$$

format to series-
connected resistor

$$
V=\frac{Q}{C}
$$

$$
\frac{Q_{T}}{C_{T}}=\frac{Q_{1}}{C_{1}}=\frac{Q_{2}}{C_{2}}=\frac{Q_{3}}{C_{3}}
$$

$$
Q=C V
$$

$C_{T} E=C_{1} V_{1}+C_{2} V_{2}+C_{3} V_{3} \quad C_{T}=C_{1}+C_{2}+C_{3}$

Example4: a. Find the total capacitance. b. Determine the charge on each plate. c. Find the voltage across each capacitor.

$$
\text { a. } \begin{aligned}
\frac{1}{C_{T}} & =\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} \\
& =\frac{1}{200 \times 10^{-6} \mathrm{~F}}+\frac{1}{50 \times 10^{-6} \mathrm{~F}}+\frac{1}{10 \times 10^{-6} \mathrm{~F}} \\
& =0.125 \times 10^{6} \\
C_{T} & =\frac{1}{0.125 \times 10^{6}}=8 \mu F
\end{aligned}
$$

$$
\text { b. } \quad \begin{aligned}
Q_{T} & =Q_{1}=Q_{2}=Q_{3} \\
& =C_{T} E=\left(8 \times 10^{-6} \mathrm{~F}\right)(60 \mathrm{~V}) \\
& =480 \mu \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& \text { c. } \quad V_{1}=\frac{Q_{1}}{C_{1}}=\frac{480 \times 10^{-6} \mathrm{C}}{200 \times 10^{-6} \mathrm{~F}}=2.4 \mathrm{~V} \\
& \quad V_{2}=\frac{Q_{2}}{C_{2}}=\frac{480 \times 10^{-6} \mathrm{C}}{50 \times 10^{-6} \mathrm{~F}}=9.6 \mathrm{~V} \\
& \quad V_{3}=\frac{Q_{3}}{C_{3}}=\frac{480 \times 10^{-6} \mathrm{C}}{100 \times 10^{-6} \mathrm{~F}}=48.0 \mathrm{~V} \\
& \text { and } \quad E=V_{1}+V_{2}+V_{3}=60 \mathrm{~V}
\end{aligned}
$$

Example5: a. Find the total capacitance.

 b. Determine the charge on each plate. -c. Find the total charges.
$1200 \mu \mathrm{~F}$

$$
\begin{aligned}
\text { a. } \quad \begin{aligned}
C_{T} & =C_{1}+C_{2}+C_{3} \\
& =800 \mu F+60 \mu F+1200 \mu F \\
& =2060 \mu F \\
\text { b. } \quad Q_{1} & =C_{1} E=\left(800 \times 10^{-6} \mathrm{~F}\right)(48 \mathrm{~V})=38.4 \mathrm{mC} \\
Q_{2} & =C_{2} E=\left(60 \times 10^{-6} \mathrm{~F}\right)(48 \mathrm{~V})=2.88 \mathrm{mC} \\
Q_{3} & =C_{1} E=\left(1200 \times 10^{-6} \mathrm{~F}\right)(48 \mathrm{~V})=57.6 \mathrm{mC} \\
\text { c. } \quad Q_{T} & =Q_{1}+Q_{2}+Q_{3}=98.88 \mathrm{mC}
\end{aligned}
\end{aligned}
$$

Example6: Find the voltage across and charge on each capacitor for the network

$$
\begin{aligned}
& C_{T}^{\prime}=C_{2}+C_{3}=4 \mu F+2 \mu F=6 \mu F \\
& C_{T}=\frac{C_{1} C_{T}^{\prime}}{C_{1}+C_{T}^{\prime}}=\frac{(3 \mu F)(6 \mu F)}{3 \mu F+6 \mu F}=2 \mu F \\
& Q_{T}=C_{T} E=\left(2 \times 10^{-6} F\right)(120 \mathrm{~V})=240 \mu C
\end{aligned}
$$

$$
\begin{array}{|}
Q_{T}=Q_{1}=Q_{T}^{\prime} \\
Q_{1}=240 \mu \mathrm{C} \\
V_{1}=\frac{Q_{1}}{C_{1}}=\frac{240 \times 10^{-6} \mathrm{C}}{3 \times 10^{-6} \mathrm{~F}}=80 \mathrm{~V} \\
Q_{T}^{\prime}=240 \mu \mathrm{C}
\end{array}
$$

Example: Find the voltage across and charge on each capacitor for the network, after each has charged up to its final value

$$
\begin{aligned}
& V_{C_{2}}=\frac{(7 \Omega)(72 \mathrm{~V})}{7 \Omega+2 \Omega}=56(\mathrm{~V}) \\
& V_{C_{1}}=\frac{(2 \Omega)(72 \mathrm{~V})}{7 \Omega+2 \Omega}=16(\mathrm{~V})
\end{aligned}
$$

$$
\begin{aligned}
& Q_{1}=C_{1} V_{C_{1}}=\left(2 \times 10^{-6} F\right)(16 \mathrm{~V})=32 \mu \mathrm{C} \\
& Q_{1}=C_{2} V_{C_{2}}=\left(3 \times 10^{-6} F\right)(56 \mathrm{~V})=168 \mu \mathrm{C}
\end{aligned}
$$

Transients in Capacitive Networks

Charging phase

- The placement of charge on the plates of a capacitor does not occur instantaneously.
- Instead, it occurs over a period of time determined
 by the components of the network.

Example8: (a) Find the mathematical expressions for the transient behavior of v_{C}, i_{C}, and v_{R} for the circuit when the switch is moved to position 1 . Plot the
${ }^{-}$curves of v_{C}, i_{C}, and v_{R}.
b. How much time must pass before it can be assumed, for all practical purposes, that $i_{C} \approx 0 \mathrm{~A}$ and $v_{C} \approx E$ volt?

$$
\begin{aligned}
& \text { (a). } \tau=R C=\left(8 \times 10^{3} \Omega\right)\left(4 \times 10^{-6} F\right) \\
& =32 \times 10^{-3} \mathrm{~s}=32 \mathrm{~ms} \\
& \begin{aligned}
& v_{C}=E\left(1-e^{-\frac{t}{\tau}}\right) \\
= & 40\left(1-e^{-\frac{t}{32 \times 10^{-3}}}\right)
\end{aligned}
\end{aligned}
$$

$$
v_{R}=E e^{-\frac{t}{\tau}}=40 e^{-\frac{t}{32 m s} \mathrm{~V}}
$$

(b). $5 \tau=5 \times 32 \mathrm{~ms}=160 \mathrm{~ms}$

Discharging phase

$$
i_{C}=-\frac{E}{R} e^{-\frac{t}{\tau}}
$$

$$
\tau=R C
$$

$$
v_{R}=-E e^{-\frac{t}{\tau}}
$$

Example9: After v_{C} in Example 8 has reached its final value of 40 V , the switch is shown into position 2. Find the mathematical expressions for the transient
${ }^{-}$behavior of v_{C}, i_{C}, and v_{R} after the closing of the switch. Plot the curves for v_{C}, i_{C}, and v_{R} using the defined directions and polarities in example 8. Assume that $\mathrm{t}=0$ when the switch is moved to position 2 .

$$
\begin{gathered}
\tau=R C=32 m s \\
v_{C}=E e^{-\frac{t}{\tau}} \\
=40 e^{-\frac{t}{32 m s} V}
\end{gathered}
$$

Example10: Find the mathematical expressions for the transient behavior of v_{C} for the circuit when the switch is moved to position 1 when $\mathrm{C}=4 \mu \mathrm{~F}, 40 \mu \mathrm{~F}$, and
${ }^{-} 100 \mathrm{uF}$. Plot the curve v_{r}

$$
+v_{R}=
$$

Example11: Find the mathematical expressions for the transient behavior of v_{C} and i_{C} for the circuit when the switch is closed position 1 at $t=0 s$.

Find the Thevenin equivalent circuit without the capacitor.

