Chapter 7

EMT1150 Introduction to Circuit Analysis

Department of Computer Engineering Technology

Fall 2018
Prof. Rumana Hassin Syed

Chapter7 Series and Parallel Networks

- Identify Series-Parallel Networks
- Understand Reduce and Return Approach
- Use Block Diagram Approach
- Descriptive Examples
- Solve Ladder Networks

Series and Parallel Networks

- What is the relationship for circuit elements?
- How to find voltage and current for each element?

Series-parallel networks are networks that contain both series and parallel circuit configurations

Basic principle

- Take a moment to study the problem "in total", find the relationship.
- Examine each region of the network independently, then combine them together.
- Redraw the network as often as possible with reduced branches.
- When you have a solution, check whether it is reasonable or not.

Reduce and Return Approach

Reduce and Return Approach

- Reduce phase: reduce the network to its simplest form across the source, then determine the source current.
- Return phase: use the resulting source current to work back to the desired unknowns.

Exp1: Find current I_{3} for the series-parallel network.

$I_{3}=I s \frac{R_{T}}{R_{3}}=9 \mathrm{~mA} \frac{6 k \Omega}{6 k \Omega}=9(\mathrm{~mA})$

Block diagram approach

T = Group elements together according to their relationships.

- Then reveal the voltage and current relation between groups.
- Lastly, examine the impact of the individual component in each group.

Exp2: Determine all currents and voltage of the network.

$$
\begin{array}{ll}
A: & R_{A}=4 \Omega \\
B: & R_{B}=R_{2} / / R_{3}=\frac{R}{N}=\frac{4 \Omega}{2}=2 \Omega \\
C: & R_{C}=R_{4}+R_{5}=2 \Omega
\end{array}
$$

$$
\begin{aligned}
& R_{B / / C}=\frac{R}{N}=\frac{2 \Omega}{2}=1 \Omega \\
& R_{T}=R_{A}+R_{B / / C}=4 \Omega+1 \Omega=5 \Omega \\
& I_{s}=\frac{E}{R_{T}}=\frac{10 \mathrm{~V}}{5 \Omega}=2 \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
& V_{A}=I_{A} R_{A}=(2 A)(4 \Omega)=8 V \\
& V_{B}=I_{B} R_{B}=(1 A)(2 \Omega)=2 V \\
& V_{C}=V_{B}=2 V
\end{aligned}
$$

$$
V D R: V_{R_{4}}=V_{C} \frac{R_{4}}{R_{C}}=2 V \frac{0.5 \Omega}{2 \Omega}=0.5 \mathrm{~V}
$$

$$
V_{R_{s}}=V_{C} \frac{R_{5}}{R_{C}}=2 V \frac{1.5 \Omega}{2 \Omega}=1.5 \mathrm{~V}
$$

$$
\begin{aligned}
& \xrightarrow{I_{A}} \stackrel{+V_{A}-}{\square} \quad I_{A}=I_{s}=2 A \\
& I_{B}=I_{C}=\frac{I_{A}}{2}=\frac{I_{s}}{2}=\frac{2 \mathrm{~A}}{2}=1 \mathrm{~A} \\
& I_{R_{2}}=I_{R_{3}}=\frac{I_{B}}{2}=0.5 \mathrm{~A}
\end{aligned}
$$

Exp3: Determine all currents and voltage.

$$
\begin{aligned}
R_{A} & =R_{1 / / 2}=\frac{(9 \Omega)(6 \Omega)}{9 \Omega+6 \Omega} \\
& =\frac{54 \Omega}{15 \Omega}=3.6 \Omega \\
R_{B} & =R_{3}+R_{4 / / 5}=4 \Omega+\frac{(6 \Omega)(3 \Omega)}{6 \Omega+3 \Omega} \\
& =4 \Omega+2 \Omega=6 \Omega \\
R_{C} & =3 \Omega
\end{aligned}
$$

Applying the current divider rule yields

$$
I_{B}=\frac{R_{C} I_{A}}{R_{C}+R_{B}}=\frac{(3 \Omega)(3 A)}{3 \Omega+6 \Omega}=1 \mathrm{~A}
$$

By Kirchhoff's current law,

$$
I_{C}=I_{A}-I_{B}=3 \mathrm{~A}-1 \mathrm{~A}=2 \mathrm{~A}
$$

By Ohm's law,

$$
\begin{aligned}
& V_{A}=I_{A} R_{A}=(3 \mathrm{~A})(3.6 \Omega)=10.8 \mathrm{~V} \\
& V_{B}=I_{B} R_{B}=V_{C}=I_{C} R_{C}=(2 \mathrm{~A})(3 \Omega)=6 \mathrm{~V}
\end{aligned}
$$

$$
I_{1}=\frac{R_{2} I_{A}}{R_{2}+R_{1}}=\frac{(6 \Omega)(3 A)}{6 \Omega+9 \Omega}=1.2 \mathrm{~A}
$$

$$
I_{2}=I_{A}-I_{1}=3 \mathrm{~A}-1.2 \mathrm{~A}=1.8 \mathrm{~A}
$$

$$
I_{R_{4}}=\frac{R_{5} I_{B}}{R_{4}+R_{5}}=\frac{(3 \Omega)(1 \mathrm{~A})}{6 \Omega+3 \Omega}=0.33 \mathrm{~A}
$$

$$
I_{R_{5}}=I_{B}-I_{R_{4}}=1 \mathrm{~A}-0.33 \mathrm{~A}=0.67 \mathrm{~A}
$$

$$
V_{R_{3}}=\frac{R_{3} V_{B}}{R_{3}+R_{4 / / 5}}=\frac{(4 \Omega)(6 \mathrm{~V})}{4 \Omega+2 \Omega}=4(\mathrm{~V})
$$

$$
V_{R_{4 / 5}}=\frac{R_{4 / / 5} V_{B}}{R_{3}+R_{4 / 15}}=\frac{(2 \Omega)(6 \mathrm{~V})}{4 \Omega+2 \Omega}=2(\mathrm{~V})
$$

More descriptive examples

- Other possible block models

Exp4: Find the current I_{4} and the voltage V_{2} for the network.

$$
I_{4}=\frac{E}{R_{B}}=\frac{E}{R_{4}}=\frac{12 \mathrm{~V}}{8 \Omega}=1.5 \mathrm{~A}
$$

$$
R_{D}=R_{2} / / R_{3}=\frac{6 \Omega \cdot 3 \Omega}{6 \Omega+3 \Omega}=2 \Omega
$$

$$
V_{2}=\frac{R_{D} E}{R_{D}+R_{C}}=\frac{(2 \Omega)(12 V)}{2 \Omega+4 \Omega}=4 V
$$

Exp5: Find the indicated currents and voltages for the network.

Exp6: a . Find the voltages $\mathrm{V}_{1}, \mathrm{~V}_{3}$, and V_{ab} for the network. b. Calculate the source current I_{s}

Applying the voltage divider rule yields
$V_{1}=\frac{R_{1} E}{R_{1}+R_{2}}=\frac{(5 \Omega)(12 \mathrm{~V})}{5 \Omega+3 \Omega}=7.5 \mathrm{~V}$
$V_{3}=\frac{R_{3} E}{R_{3}+R_{4}}=\frac{(6 \Omega)(12 \mathrm{~V})}{6 \Omega+2 \Omega}=9 \mathrm{~V}$

Applying Kirchhoff's voltage law around the indicated loop of Fig.
$-V_{1}+V_{3}-V_{a b}=0$
$V_{a b}=V_{3}-V_{1}=9 \mathrm{~V}-7.5 \mathrm{~V}=1.5 \mathrm{~V}$

b.

By Ohm' s law,

$$
\begin{aligned}
& I_{1}=\frac{V_{1}}{R_{1}}=\frac{7.5 \mathrm{~V}}{5 \Omega}=1.5 \mathrm{~A} \\
& I_{3}=\frac{V_{3}}{R_{3}}=\frac{9 \mathrm{~V}}{6 \Omega}=1.5 \mathrm{~A}
\end{aligned}
$$

Applying Kirchhoff's current law,

$$
I_{s}=I_{1}+I_{3}=1.5 \mathrm{~A}+1.5 \mathrm{~A}=3 \mathrm{~A}
$$

Exp7: Calculate the indicated currents and voltage

$$
I_{6}=\frac{E}{R_{6,7 / /(8,9)}}=\frac{72 \mathrm{~V}}{12 \mathrm{k} \Omega+4.5 \mathrm{k} \Omega}=4.36 \mathrm{~mA}
$$

$$
I_{s}=I_{5}+I_{6}=3 \mathrm{~mA}+4.36 \mathrm{~mA}=7.36 \mathrm{~mA}
$$

Ladder Network

The name comes from the repetitive structure.

- Use the reduce and return approach

Exp8: Calculate the indicated currents and voltage

$$
\begin{aligned}
& I_{6}=\frac{(6 \Omega) I_{3}}{6 \Omega+3 \Omega}=\frac{6}{9}(15 \mathrm{~A})=10 \mathrm{~A} \\
& V_{6}=I_{6} R_{6}=(10 \mathrm{~A})(2 \Omega)=20 \mathrm{~V}
\end{aligned}
$$

