Chapter 6

EMT1150 Introduction to Circuit Analysis

Department of Computer Engineering Technology

Fall 2018
Prof. Rumana Hassin Syed

Chapter6 Parallel DC Circuit

- Parallel connection and total resistance
- Parallel circuits analysis
- Kirchhoff's Current Law
- Current Divider Rule
- Voltage Sources in Parallel

Parallel connections

- Two elements are in parallel if they have two points in common.
- Elements 1 and 2 have terminals a and b in common
they are therefore in parallel.

$R_{1} / / R_{2}$

Different representations of parallel connection

Mixtures of parallel and series connections

$$
R_{1} / / R_{2}+R_{3}
$$

$\left(R_{1}+R_{2}\right) / / R_{3}$
Or $R_{1,2} / / R_{3}$

Check understanding

Exp1. What is the relationship between R1 and R3?
(a) Parallel
(b) Series
(c) Neither

Exp2. Find the equivalent resistance of the net work.
(a) $R 1+R 2+R 3+R 4$
(b) $(\mathrm{R} 1+\mathrm{R} 2) / / \mathrm{R} 3 / / \mathrm{R} 4$
(c) $(\mathrm{R} 1+\mathrm{R} 2) / / \mathrm{R} 3+\mathrm{R} 4$
(d) $(\mathrm{R} 1+\mathrm{R} 2) / /(\mathrm{R} 3+\mathrm{R} 4)$

Total resistance of parallel connections

$$
G=\frac{1}{R} \quad \mathbf{G}_{\mathrm{T}}=\mathbf{G}_{\mathbf{1}}+\mathbf{G}_{\mathbf{2}}+\mathbf{G}_{\mathbf{3}}+\cdots+\mathbf{G}_{\mathrm{N}}
$$

For parallel elements, the total conductance is the sum of the individual conductance.

Two Special cases

Two parallel resistors

$$
\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}=\frac{R_{2}+R_{1}}{R_{1} R_{2}}
$$

$$
R_{T}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

The total resistance of two parallel resistors is the product of the two divided by their sum.

Equal parallel resistors $\left(R_{1}=R_{2}=\ldots=R_{N}=R\right)$

$$
\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots+\frac{1}{R_{N}}=\frac{N}{R} \quad R_{T}=\frac{R}{N}
$$

Exp3: Determine the total resistance for the parallel network

Method1:
$\begin{aligned} G_{T} & =G_{1}+G_{2}=\frac{1}{3 \Omega}+\frac{1}{6 \Omega} \\ & =0.333 S+0.167 S=0.5 S\end{aligned}$

$$
R_{T}=\frac{1}{G_{T}}=\frac{1}{0.5 S}=2 \Omega
$$

Method2:

$$
R_{T}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{3 \Omega \times 6 \Omega}{3 \Omega+6 \Omega}=2(\Omega)
$$

Exp4: Determine the total resistance for the parallel network

Exp5: Determine the total resistance for the parallel network

$$
\begin{aligned}
R_{T} & =\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}+\frac{1}{R_{5}}} \\
& =\frac{1}{\frac{1}{6 \Omega}+\frac{1}{9 \Omega}+\frac{1}{6 \Omega}+\frac{1}{72 \Omega}+\frac{1}{6 \Omega}}=1.6 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& R_{T}^{\prime}=\frac{R}{N}=\frac{6 \Omega}{3}=2 \Omega \\
& R_{T}^{\prime \prime}=\frac{R_{2} R_{4}}{R_{2}+R_{4}}=\frac{(9 \Omega)(72 \Omega)}{9 \Omega+72 \Omega}=\frac{648 \Omega}{81}=8 \Omega
\end{aligned}
$$

$$
\begin{aligned}
R_{T} & =R_{T}^{\prime} / / R_{T}^{\prime \prime}=\frac{R_{T}^{\prime} R_{T}^{\prime \prime}}{R_{T}^{\prime}+R_{T}^{\prime \prime}} \\
& =\frac{(2 \Omega)(8 \Omega)}{2 \Omega+8 \Omega}=\frac{16 \Omega}{10}=1.6 \Omega
\end{aligned}
$$

Parallel circuits

If two elements are in parallel, the voltage across them must be the same.

$$
\begin{aligned}
& V_{1}=V_{2}=E \\
& I_{1}=\frac{V_{1}}{R_{1}}=\frac{E}{R_{1}} \\
& I_{2}=\frac{V_{2}}{R_{2}}=\frac{E}{R_{2}}
\end{aligned}
$$

Current \& Power distribution

For single-source parallel networks, the source current $\left(I_{s}\right)$ is equal to the sum of the individual branch current.

$$
I_{s}=I_{1}+I_{2}
$$

The power dissipated by the resistors is equal to the power delivered by the source.

$$
\begin{aligned}
& P_{1}=V_{1} I_{1}=I_{1}^{2} R_{1}=\frac{V_{1}^{2}}{R_{1}} \\
& P_{1}=V_{2} I_{2}=I_{2}^{2} R_{2}=\frac{V_{2}^{2}}{R_{2}} \\
& P_{s}=E I_{s}=I_{s}^{2} R_{T}=\frac{E^{2}}{R_{T}}
\end{aligned}
$$

Review

Series

One node in

Definition

Total
resistance

$$
R_{T}=R_{1}+R_{2}+\ldots+R_{N}
$$

same current, voltage depends Ohm's law

$$
\begin{gathered}
\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{N}} \\
\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{1}+\mathrm{G}_{2}+\mathrm{G}_{3}+\cdots+\mathrm{G}_{\mathrm{N}}
\end{gathered}
$$

Parallel

Two nodes in common
same voltage,
current depends
Ohm's law

Exp6. a. Calculate R_{T}.
b. Determine I_{s}.
c. Calculate I_{1} and I_{2}, and demonstrate that $I_{s}=I_{1}+I_{2}$.
d. Determine the power to each resistive load.
e. Determine the power delivered by the source, and compare it to the total power dissipated by the resistive elements.

$$
\text { d. } \begin{aligned}
& P_{1}=V_{1} I_{1}=E I_{1}=(27 \mathrm{~V})(3 \mathrm{~A})=81 \mathrm{~W} \\
& P_{2}=V_{2} I_{2}=E I_{2}=(27 \mathrm{~V})(1.5 \mathrm{~A})=40.5 \mathrm{~W}
\end{aligned}
$$

$$
\text { e. } P_{S}=E I_{S}=(27 \mathrm{~V})(4.5 \mathrm{~A})=121.5 \mathrm{~W}
$$

$$
P_{1}+P_{2}=81 \mathrm{~W}+40.5 \mathrm{~W}=121.5 \mathrm{~W}
$$

$$
P_{d}=P_{c}
$$

$$
\begin{aligned}
& \begin{array}{|l|l|}
\mid l^{I_{s}}
\end{array}\left|\left.\right|^{I_{2}}+\quad \text { c. } I_{1}=\frac{V_{1}}{R_{1}}=\frac{E}{R_{1}}=\frac{27 \mathrm{~V}}{9 \Omega}=3 \mathrm{~A}\right. \\
& I_{2}=\frac{V_{2}}{R_{2}}=\frac{E}{R_{2}}=\frac{27 \mathrm{~V}}{18 \Omega}=1.5 \mathrm{~A} \\
& I_{s}=I_{1}+I_{2} \\
& 4.5 A=3 A+1.5 A \\
& =4.5 \mathrm{~A} \text { (checks) }
\end{aligned}
$$

Exp7. Given the information provided in the Figure a. Determine R_{3}.
b. Calculate E .
c. Find $I_{s} \& I_{2}$.
d. Determine P_{2}.

(b) $\mathrm{E}=\mathrm{V}_{1}=\mathrm{I}_{1} \mathrm{R}_{1}=(4 \mathrm{~A})(10 \Omega)=40 \mathrm{~V}$

$$
\begin{aligned}
& \text { (c) } I_{s}=\frac{E}{R_{T}}=\frac{40 \mathrm{~V}}{4 \Omega}=10 \mathrm{~A} \\
& I_{2}=\frac{V_{2}}{R_{2}}=\frac{E}{R_{2}}=\frac{40 \mathrm{~V}}{20 \Omega}=2 \mathrm{~A} \\
& \text { (d) } P_{2}=I_{2}^{2} R_{2}=(2 \mathrm{~A})^{2}(20 \Omega)=80 \mathrm{~W}
\end{aligned}
$$

Kirchhoff's current law

Current can only flow in a closed circuit.

- Current must not be lost as it flows around the circuit:
- net charge cannot accumulate within the circuit charge must be conserved

> Kirchhoff's current law (KCL) states that the sum of the currents entering a node (junction) must equal to the sum of the currents leaving the node.

$$
\sum \boldsymbol{I}_{\text {in }}=\sum \boldsymbol{I}_{\text {out }}
$$

Different ways to write KCL

The sum of the currents entering a node (junction) must equal to the sum of the currents leaving the node.

$$
\begin{gathered}
\sum I_{\text {in }}=\sum I_{\text {out }} \\
I_{1}=I_{2}+I_{3}
\end{gathered}
$$

The algebraic sum of the current entering and leaving a node (or junction) of a network is zero. Give negative sign when current come in, give positive sign when current leave the node.

$$
\Sigma I_{i}=0 \quad-I_{1}+I_{2}+I_{3}=0
$$

Exp8. Determine the currents $\mathrm{I}_{1}, \mathrm{I}_{3}, \mathrm{I}_{4}$, and I_{5} for the network

KCL@ node a:
$\sum I_{\text {in }}=\Sigma I_{\text {out }}$
$I=I_{I}+I_{2}$
$5 A=I_{I}+4 A$
$I_{I}=1 A$

KCL @ node b:
$\sum I_{\text {in }}=\sum I_{\text {out }}$
$I_{1}=I_{3}=1 A$

$\mathrm{KCL} @$ node c:
$\sum I_{\text {in }}=\sum I_{\text {out }}$
$I_{2}=I_{4}=4 A$

$$
\begin{aligned}
& \mathrm{KCL} @ \text { node } \mathrm{d}: \\
& \sum I_{\text {in }}=\sum I_{\text {out }} \\
& I_{1}+I_{2}=I_{5} \\
& I_{5}=1 \mathrm{~A}+4 \mathrm{~A} \\
& I_{1}=5 \mathrm{~A} \\
& \hline
\end{aligned}
$$

Exp9. Find the magnitude and direction of the currents $\mathrm{I}_{3}, \mathrm{I}_{4}, \mathrm{I}_{6}$, and I_{7} for the network

$\mathrm{KCL} @$ node a:
$\Sigma I_{\text {in }}=\Sigma I_{\text {out }}$
$I_{l}=I_{2}+I_{3}$
$10 \mathrm{~A}=12 \mathrm{~A}+I_{3}$
$I_{3}=-2 \mathrm{~A}$

KCL @ node b:

$\Sigma I_{\text {in }}=\Sigma I_{\text {out }}$	
$I_{2}=I_{4}+I_{5}$	KCL @ node c:
$12 \mathrm{~A}=I_{4}+8 \mathrm{~A}$	$\Sigma I_{\text {in }}=\Sigma I_{\text {out }}$
$I_{4}=4 \mathrm{~A}$	$I_{3}+I_{4}=I_{6}$
	$\begin{aligned} & -2 A+4 A=I_{6} \\ & I_{6}=2 A \end{aligned}$

KCL @ node d:
$\sum I_{\text {in }}=\Sigma I_{\text {out }}$
$I_{5}+I_{6}=I_{7}$
$8 \mathrm{~A}+2 \mathrm{~A}=I_{7}$
$I_{7}=10 \mathrm{~A}$

Apply KCL to parallel resistor network to find equivalent resistance

Parallel connection: $\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{E}$
KCL @ node a

$$
I_{s}=I_{1}+I_{2}
$$

$$
I_{s}=\frac{E}{R_{1}}+\frac{E}{R_{2}}=E\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)
$$

$$
R_{T}=\frac{E}{I_{s}}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}
$$

Current Divider Rule

This rule is used to calculate the current through any resistor connected in a parallel circuit.

- Consider finding I_{1} in the parallel circuit :

$$
\begin{aligned}
& I_{1}=\frac{E}{R_{1}} \\
& E=I_{s} R_{T}
\end{aligned} \quad R_{T}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}
$$

- This same analysis can be used to find I_{2} :

$$
I_{2}=\frac{E}{R_{2}}=\frac{I_{s} R_{T}}{R_{2}}=\frac{I_{s}}{R_{2}}\left(\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}\right)=I_{s}\left(\frac{\frac{1}{R_{2}}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}\right)=I_{s} \frac{R_{T}}{R_{2}}
$$

- In general, if a circuit contains N resistors in parallel, the current through any one of the resistors R_{j} is:

In other words, in a parallel resistive circuit, the current will split with a ratio equal to the inverse of their resistor values

$$
\frac{I_{1}}{I_{2}}=\frac{R_{2}}{R_{1}}
$$

Special case: Two parallel resistors

Exp11: Find the current I_{1} for the network

Current seeks the path of least resistance.

1. More current passes through the smaller of two parallel resistors.
2. The current entering any number of parallel resistors divides into these resistors as the inverse ratio of their resistance values.

Exp12: Determine the resistance R_{1} to effect the division of current in figure.

Voltage source in parallel

- Voltage sources can be placed in parallel only if they have the same voltage.
- The primary reason for placing two or more batteries or supplies in parallel is to increase the current rating above that of a single supply.

