Syed Rizvi
TCET 2220

Professor Viviana
Chapter 3 HW

3-1. A traveling wave of current in milliamperes is given by $\mathrm{i}=8 \cos \left(2 \pi * 10^{6} \mathrm{t}-0.025 \mathrm{x}\right)$ with t in seconds and x in meters. Determine the following :
(a) Direction of propagation:

Positive
(b) Peak value

8
(c) Angular frequency:

$$
2 * \pi^{*} \mathrm{f}=2 \pi^{*} 10^{6}=6.28 * 10^{6}
$$

(d) Phase constant:
$\beta=.025$
(e) Cyclic frequency:

$$
\mathrm{f}=\frac{\omega}{2 * \pi}=\frac{6.28 * 10^{6}}{2 * \pi}=1 * 10^{6}
$$

(f) Period:

$$
\mathrm{T}=\frac{1}{f}=\frac{1}{10^{6}}=1 * 10^{-6}
$$

(g) Wavelength:

$$
\lambda=\frac{2 \pi}{\beta}=\frac{2 \pi}{.025}=251.327 \mathrm{~m}
$$

(h) Velocity of propagation:
$\mathrm{V}=\mathrm{f} * \lambda=10^{6} * 251.327=2.51 * 10^{8}$

3-2. A traveling wave of voltage in volts in given by $v=15 \cos \left(10^{8} t+0.35 x\right)$ with t in seconds and x in meters. Determine the following:
(a) Direction of propagation:

Negative
(b) Peak value:

15
(c) Angular frequency:
10^{8}
(d) Phase constant
$\beta=.35$
(e) Cyclic frequency:

$$
\mathrm{f}=\frac{\omega}{2 * \pi}=\frac{10^{8}}{2 * \pi}=1.59 * 10^{7}
$$

(f) Period:
$\mathrm{T}=\frac{1}{f}=\frac{1}{1.59 * 10^{7}}=6.289 * 10^{-8}$
(g) Wavelength:
$\lambda=\frac{2 \pi}{\beta}=\frac{2 \pi}{.35}=17.952$
(h) Velocity of propagation:
$\mathrm{V}=\mathrm{f} * \lambda=1.59 * 10^{7} * 17.952=2.86 * 10^{8}$

3-3. A sinusoidal current with a peak value of 2 A and a frequency of 50 MHz is traveling in the positive x -direction with a velocity of $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Determine the following:
(a) Period
$\mathrm{T}=\frac{1}{f}=\frac{1}{50 * 10^{6}}=20 * 10^{-9}$
(b) Angular frequency

$$
\omega=2 * \pi * \mathrm{f}=2 * \pi * 50 * 10^{6}=3.14 * 10^{8}
$$

(c) Phase constant

$$
\beta=\frac{\omega}{v}=\frac{3.14 * 10^{8}}{2 * 10^{8}}=1.57
$$

(d) Wavelength

$$
\lambda=\frac{2 \pi}{\beta}=\frac{2 \pi}{1.57}=4.00203
$$

(e) An equation for the current
$=2 * \cos \left(3.14 * 10^{8} t-1.57 x\right)$

3-4. A sinusoidal voltage with a peak value of 25 V and a radian frequency of $20 \mathrm{Mrad} / \mathrm{s}$ is traveling in the negative x -direction with a velocity of $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Determine the following:
(a) Cylic frequency:

$$
\mathrm{f}=\frac{\omega}{2 * \pi}=\frac{20 * 10^{6}}{2 * \pi}=3.18 * 10^{6}
$$

(b) Period:

$$
\mathrm{T}=\frac{1}{f}=\frac{1}{3.18 * 10^{6}}=3.14 * 10^{-7}
$$

(c) Phase constant:

$$
\beta=\frac{\omega}{v}=\frac{20 * 10^{6}}{3 * 10^{8}}=.06667
$$

(d) Wavelength:
$\lambda=\frac{2 \pi}{.06667}=94.2$
(e) An equation for the voltage:
$=25^{*} \cos \left(20 * 10^{6} t+(.06667 x)\right)$

3-5. Consider the current traveling wave of Problem 3-1. Determine the following:

$$
\mathrm{i}=8 \cos \left(2 \pi * 10^{6} \mathrm{t}-0.025 \mathrm{x}\right)
$$

(a) a fixed phasor representation in peak units as either $\overline{\mathrm{I}}^{+}$or $\overline{\mathrm{I}}^{-}$(You decide which label is appropriate.)
$\overline{\mathrm{I}}^{+}=8 * \mathrm{e}^{0}=8 \angle 0$
(b) the corresponding distance-varying phasor $\overline{\mathrm{I}}(\mathrm{x})$ in peak units

$$
\begin{aligned}
& \mathrm{I}(\mathrm{x})=\overline{\mathrm{I}^{+}}=8 * \mathrm{e}^{0} * \mathrm{e}^{\mathrm{i} \beta \mathrm{x}} \\
& =8 * \mathrm{e}^{0} * \mathrm{e}^{\mathrm{j}-0.025} \\
& =(8 \angle 0)^{*}(1 \angle-.0025 \mathrm{x}) \\
& =(8 \angle-.0025 \mathrm{x})
\end{aligned}
$$

(c) the value of the distance-varying phasor at $\mathrm{x}=100 \mathrm{~m}$.

$$
\begin{aligned}
& =(8 \angle-.0025 x) \\
& =\left(8 \angle-.0025^{*} 100\right) \\
& =8 \angle-2.5
\end{aligned}
$$

3-6. Consider the voltage traveling wave of Problem 3-2. Determine the following:

$$
15 \cos \left(10^{8} t+0.35 x\right)
$$

(a) a fixed phasor representation in peak units as either $\overline{\mathrm{V}}^{+}$or $\overline{\mathrm{V}}^{-}$(You decide which label is appropriate.)

$$
\overline{\mathrm{V}}^{-}=15^{*} \mathrm{e}^{\mathrm{j} 0}=15 \angle 0
$$

(b) the corresponding distance-varying phasor $\overline{\mathrm{V}}(\mathrm{x})$ in peak units

$$
\begin{aligned}
\overline{\mathrm{V}}(\mathrm{x}) & =\overline{\mathrm{V}}^{-} * \mathrm{e}^{\mathrm{j} \beta \mathrm{x}} \\
& =15 * \mathrm{e}^{\mathrm{j} 0 *} \mathrm{e}^{\mathrm{j} 0.35} \\
& =15 \angle-0.35 * \mathrm{x}
\end{aligned}
$$

(c) the value of the distance-varying phasor at $x=4 \mathrm{~m}$.

$$
\begin{aligned}
& \overline{\mathrm{V}}(4)=15 \angle-0.35 * \mathrm{x} \\
& \overline{\mathrm{~V}}(4)=15 \angle-0.35 * 4 \\
& \overline{\mathrm{~V}}(4)=15 \angle-1.20
\end{aligned}
$$

3-7. Repeat the analysis of Problem 3-5 if the current of Problem 3-1 has a fixed phase shift such that it is described by

$$
\mathrm{i}=8 \cos \left(2 \pi * 10^{6} t-0.025 x+1.5\right)
$$

(a) $\overline{\mathrm{I}}^{+}=8 * \mathrm{e}^{1.5}=8 \angle 1.5$
(b) $\overline{\mathrm{I}}=\overline{\mathrm{I}}^{+} * \mathrm{e}^{\mathrm{j}-0.025}$

$$
=8 * \mathrm{e}^{1.5} * \mathrm{e}^{\mathrm{j}-0.025}
$$

$$
=8 \angle 1.5-0.25 * x
$$

(c) $\overline{\mathrm{I}}(100)=8 \angle 1.5-0.25^{*} 100$

$$
\begin{aligned}
& =8 \angle 1.5-0.25^{*} 100 \\
& =8 \angle-1
\end{aligned}
$$

3-8. Repeat the analysis of Problem 3-5 if the current of Problem 3-1 has a fixed phase shift such that it is described by

$$
v=15 \cos \left(10^{8} t+0.35 x-\frac{\pi}{3}\right)
$$

a) $\bar{V}^{-}=15 * e^{j-\frac{\pi}{3}}$
b) $\overline{\mathrm{V}}=15 * \mathrm{e}^{\mathrm{j}-\frac{\pi}{3}} * \mathrm{e}^{\mathrm{j} 0.35 \mathrm{x}}$
$=15 \angle-\frac{\pi}{3}+0.35 \mathrm{x}$
c) $\bar{V}(4)=15 \angle-\frac{\pi}{3}+0.35 * 4$
$=15 \angle-58.6$

3-9. Redefine the fixed phasor of Problem 3-5 so that the phasor magnitude is expressed in rms units, and determine the average power dissipated in $50-\Omega$ resistance.
a) Irms=

$$
\begin{aligned}
& =\frac{\overline{\mathrm{I}}+=8 * e^{j 0}=8 \angle 0}{\sqrt{2}} \\
& =5.65
\end{aligned}
$$

b)Power dissipated $=(\mathrm{I})^{2 *} \mathrm{R}=(5.65)^{2} * 50=1600$ watts

3-10. Redefine the fixed phasor of Problem 3-6 so that the phasor magnitude is expressed in rms units, and determine the average power dissipated in $75-\Omega$ resistance.
a) $\mathrm{Vrms}=$

$$
\begin{aligned}
& =\frac{\bar{v}^{-}=8 * e^{j 0}=15 \angle 0}{\sqrt{2}} \\
& =10.61 \angle 0
\end{aligned}
$$

b)Power dissipated $=\frac{V^{2}}{R}=\frac{(10.61)^{2}}{75}=1.501$ watts

3-11. Redefine the fixed phasor of Problem 3-7 so that the phasor magnitude is expressed in rms units. Would the power dissipated in a $50-\Omega$ resistance be the same as in Problem 3-9?
a) $\mathrm{Irms}=$

$$
\begin{aligned}
& =\frac{\overline{\mathrm{I}}+=8 * e^{j 1.5}=8 \angle 1.5}{\sqrt{2}} \\
& =5.56<1.5
\end{aligned}
$$

b) Power dissipated $=(\mathrm{I}) 2 * \mathrm{R}=(5.56) 2 * 75=1600$ watts

3-12. Redefine the fixed phasor of Problem 3-8 so that the phasor magnitude is expressed in rms units. Would the power dissipated in a $75-\Omega$ resistance be the same as in Problem 3-10?
a) $\mathrm{Vrms}=$

$$
\begin{aligned}
& =\frac{\overline{\mathrm{V}}^{-}=15 * \mathrm{e}^{j-\frac{\pi}{3}}=15 \angle-\frac{\pi}{3}}{\sqrt{2}} \\
& =10.61 \angle-\frac{\pi}{3}
\end{aligned}
$$

b)Power dissipated $=\frac{V^{2}}{R}=\frac{(10.61)^{2}}{75}=1.501$ watts; same as Problem 3-10

3-13. Under steady-state ac conditions, the forward current wave on a certain lossless $50-\Omega$ line is $\overline{\mathrm{I}}^{+}=2 \angle 0$ A. Determine the voltage forward wave.
a) $\overline{\mathrm{I}}^{+}=2 \angle 0 \mathrm{~A}$.
b) $\overline{\mathrm{V}}^{+}=\mathrm{R}_{0} * \overline{\mathrm{I}}^{+}$

$$
\begin{aligned}
& =2 \angle 0 A * 50 \\
& \overline{\mathrm{~V}}^{+}=100 \angle 0
\end{aligned}
$$

3-14. Under steady-state ac conditions, the forward voltage wave in a $300-\Omega$ lossless line is $\bar{V}^{+}=15 \angle 3$ A. Determine the current forward wave.

$$
\overline{\mathrm{I}}^{+}=\frac{\overline{\mathrm{V}}^{+}}{\mathrm{R} 0}=\frac{15 \angle 3}{300}=.05 \angle 3 \mathrm{~A}
$$

3-15. Under steady-state ac conditions, the reverse voltage wave on a lossless $50-\Omega$ line is $\overline{\mathrm{V}}$ $=200 \angle 0$ A. Determine the reverse current wave.

$$
\overline{\mathrm{I}}^{-}=-\frac{\overline{\mathrm{V}}^{-}}{\mathrm{R} 0}=\frac{200 \angle 0}{-50}=-4 \angle 0 \mathrm{~A}
$$

3-16. Under steady-state ac conditions, the reverse current wave on a lossless $75-\Omega$ line is \bar{I}^{-} $=.5 \angle 2$. Determine the reverse voltage wave.

$$
\overline{\mathrm{V}}^{-}=\mathrm{R} 0 * \overline{\mathrm{I}}^{-}=-75 *(.5 \angle 2 \mathrm{~A})=-37.5 \angle 2
$$

3-17. A table of specifications for one version of RG-8/U 50- Ω coaxial cable indicates that the attenuation per 100 ft at 50 MHz is 1.2 dB . At this frequency, determine the following:
(a) attenuation factor in decibels per foot.

$$
\alpha=\frac{1.2 \mathrm{~dB}}{100 f t}=.012
$$

(b) attenuation factor in nepers per foot.

$$
\mathrm{L}_{\mathrm{NP}}=\frac{.012 \mathrm{~dB}}{8.868 \mathrm{ft}}=1.382 * 10^{-3}
$$

For a length of 300 ft , determine the following:
(c) total attenuation in decibels.

$$
300 \mathrm{ft} * .012=3.6 \mathrm{~dB}
$$

(d) total attenuation in nepers

$$
\mathrm{L}_{\mathrm{NP}}=\left(1.382 * 10^{-3}\right) * 300=.4146
$$

(e) $\frac{V_{2}}{V_{1}}$ ratio using both decibels and nepers for a single wave

$$
\begin{aligned}
& \frac{1}{V_{2}}=\mathrm{e}^{-\mathrm{L}}=\mathrm{e}^{-(1.382 *} 10^{-3)}=.999 \\
& \frac{V_{2}}{V_{1}}=10 * \frac{-3.6}{20}=.661
\end{aligned}
$$

3-18. A transmission line has an attenuation of $0.05 \mathrm{~dB} / \mathrm{m}$. Determine the following:
(a) attenuation factor in nepers $/ \mathrm{m}$

For a length of 400 m , determine the following:
$\frac{\mathrm{L} \frac{d B}{m}}{8.686}=\frac{.005}{8.686}=5.76 * 10^{-4}$
(b) total attenuation in decibels.
$\mathrm{L}_{\mathrm{db}}=.05 * 400=20$
(c) total attenuation in nepers
$5.76 * 10^{-3} * 400=2.304$
(d) $\frac{V_{2}}{V_{1}}$ ratio using both decibels and nepers for a single wave.
$\frac{V_{2}}{V_{1}}=10 * \frac{-20}{20}=.1$
3-19. A single frequency wave is propagating in one direction on a transmission line of length of 200 m . With an input rms voltage of 50 V , the output rms voltage is measured as 20 V .
Determine the following:
(a) total attenuation in decibels.

1) $=20 \log _{10} \frac{V_{1}}{V_{2}}$
$8 \mathrm{~L}_{\mathrm{db}}=20 \log _{10}\left(\frac{50}{20}\right)$
2) $\alpha \frac{N_{p}}{m}=\frac{\mathrm{Ldb}}{8.686 * d}=\frac{8}{8.686 * 200}=.004511$
3) $\alpha_{\mathrm{db}}=8.686 * .004511=.039991$
4) $\mathrm{L}_{\mathrm{db}}=.039991 * 200=7.9982$
(b) total attenuation in nepers.
$\mathrm{L}_{\mathrm{NP}}=\alpha * \mathrm{~d}=.004511 * 200=.9022$
(c) attenuation factor in decibels/meter
$\alpha_{\mathrm{db}}=8.686$ *. $004511=.039991$
(d) attenuation factor in nepers/meter

$$
\alpha_{\mathrm{Np}}=4.511 * 10^{-3} \frac{\mathrm{~N}_{p}}{\mathrm{~m}}
$$

3-20. A single frequency wave is propagating in one direction on a transmission line of length 400 m . The input power to the line is 40 W , and the output power is 12 W . Determine the following:
(a) total attenuation in decibels.

1) $\mathrm{L}_{\mathrm{db}}=10 \log _{10}\left(\frac{P_{1}}{P_{2}}\right)$
$\mathrm{L}_{\mathrm{db}}=10 \log 10\left(\frac{40}{12}\right)=5.228$
2) $\alpha \frac{N_{p}}{m}=\frac{\mathrm{Ldb}}{8.686 * d}=\frac{5.228}{8.686 * 200}=.00334=3.34 * 10^{-3} \frac{N_{p}}{m}$
3) $\alpha_{\mathrm{db}}=8.686 * .00334=.029011$

$$
\text { 4) } .029011 * 400=11.6044
$$

(b) total attenuation in nepers.
$\mathrm{L}_{\mathrm{NP}}=\alpha * \mathrm{~d}=.00334 * 400=1.34$
(c) attenuation constant in decibels/meters

$$
\alpha_{\mathrm{db}}=8.686 * .004511=.039991
$$

(d) attenuation factor in nepers/meter

$$
\alpha \frac{N_{p}}{m}=\frac{\mathrm{Ldb}}{8.686 * d}=\frac{5.228}{8.686 * 200}=.00334=3.34 * 10^{-3} \frac{N_{p}}{\mathrm{~m}}
$$

3-21. A transmission line has the following parameters at $50 \mathrm{MHz}: \mathrm{L}=1.2 \mu \mathrm{H} / \mathrm{m}, \mathrm{R}=15 \Omega / \mathrm{m}, \mathrm{C}=$ $10 \mathrm{pF} / \mathrm{m}$, and $\mathrm{G}=4 \mu \mathrm{~S} / \mathrm{m}$. Determine the following:
(a) $\left.\mathrm{Z}=\mathrm{R}+\mathrm{j} \omega \mathrm{L}=15+\mathrm{j}\left(\left(2 * \pi^{*} 50^{*} 10^{6}\right) * 1.2 * 10^{-6}\right)\right)=15+\mathrm{j}(376.991)$ $=377 \angle 1.5$
(b) $\left.\mathrm{Y}=\mathrm{G}+\mathrm{j} \omega \mathrm{C}=4^{*} 10^{-6}+\mathrm{j}\left(\left(2 * \pi^{*} 50^{*} 10^{6}\right) * 10 * 10^{-12}\right)\right)=.000004+\mathrm{j}(.003142)$ $=.003142 \angle 1.5$
(c) γ, α, and β

$$
\begin{aligned}
& \gamma=\sqrt{Z \angle Y}=\sqrt{(377 \angle 1.5) *(.00314 \angle 1.57)}=.0223341+\mathrm{j}(1.08855) \\
& \alpha=.0223341 \\
& \beta=1.08855
\end{aligned}
$$

(d) attenuation in dB / m

$$
\alpha_{\mathrm{db}}=8.686 * .0223341=.193994 \frac{d B}{m}
$$

(e) $\mathrm{v}=\frac{\omega}{\beta}=\frac{2 * \pi * 50 * 10^{6}}{1.08855}=2.885 * 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
(f) $\mathrm{Z}_{0}=\sqrt{\frac{Z}{Y}}=\sqrt{\frac{15+\mathrm{j}(376.991)}{.000004+\mathrm{j}(.003142)}}=346.46-\mathrm{j}(6.67)=346.525 \angle-.02$

3-22. A lossy audio-frequency line has the following parameters at $2 \mathrm{kHz}: \mathrm{L}=0.1 \mu \mathrm{H} / \mathrm{ft}, \mathrm{R}=0.2$ $\Omega / \mathrm{ft}, \mathrm{C}=2 \mathrm{pF} / \mathrm{ft}$, and G is negligible. Determine the following:
(a) $\mathrm{Z}=\mathrm{R}+\mathrm{j} \omega \mathrm{L}=.2+\mathrm{j}\left(\left(2 * \pi^{*} 2000\right) * .1 * 10^{-6}=.2+\mathrm{j}(0.12566)=.200394 \angle .0627\right.$
(b) $\mathrm{Y}=\mathrm{G}+\mathrm{j} \omega \mathrm{C}=\mathrm{j}\left(\left(2^{*} \pi^{* 2000)} * 2 * 10^{-12}\right)\right)=\mathrm{j}\left(2.513^{*} 10^{-8}\right)=$ $=2.513 * 10^{-8} \angle 1.5$
(c) γ, α, and β
(d) γ, α, and β

$$
\begin{aligned}
& \gamma=\sqrt{Z \angle \mathrm{Y}}=\sqrt{(.2+\mathrm{j}(0.12566)) *\left(. \mathrm{j}\left(2.513 * 10^{-8}\right)\right.}=.000049+\mathrm{j}(.000052) \\
& \alpha=.000049 \\
& \beta=.000052
\end{aligned}
$$

(e) attenuation in $\mathrm{dB} / \mathrm{ft}$

$$
\alpha_{\mathrm{db}}=8.686 * .000049=.000426 \frac{d B}{f t}
$$

(f) $\mathrm{v}=\frac{\omega}{\beta}=\frac{2 * \pi * 2000}{.000052}=2.42 * 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
(g) $\mathrm{Z}_{0}=\sqrt{\frac{Z}{Y}}=\sqrt{\frac{2+\mathrm{j}(0.12566)}{\mathrm{j}\left(2.513 * 10^{-8}\right)}}=2823.88 \angle-.754$

3-23. A coaxial cable has the following parameters at a frequency of 1 MHz :

$$
\begin{aligned}
& \text { series resistance }=0.3 \Omega / \mathrm{m} \\
& \text { series reactance }=2 \Omega / \mathrm{m} \\
& \text { shunt conductance }=0.5 \mu \mathrm{~S} / \mathrm{m} \\
& \text { shunt susceptance }=0.6 \mathrm{mS} / \mathrm{m}
\end{aligned}
$$

Determine the following:

1) $\mathrm{Z}=\mathrm{R}+\mathrm{jL}=.3+\mathrm{j} 2=2.022 \angle 1.4$
2) $\mathrm{Y}=\mathrm{G}+\mathrm{jC}=.5 * 10^{-6}+\mathrm{j}\left(\left(.6^{*} 10^{-3}\right)\right)=.5 * 10^{-6}+\mathrm{j} .0006$
$=.0006 \angle 1.57$
(a) γ, α, and β
$\gamma=\sqrt{Z \angle Y}=\sqrt{2.022 \angle 1.4 *(.0006 \angle 1.57)}=.002985+\mathrm{j}(.034703)$
$\alpha=.002985$
$\beta=.034703$
(b) attenuation in $\mathrm{dB} / \mathrm{ft}$

$$
\alpha_{\mathrm{db}}=8.686 * .002985=.025928 \frac{d B}{m}
$$

(c) $\mathrm{v}=\frac{\omega}{\beta}=\frac{2 * \pi * 1 * 10^{6}}{.034703}=1.81 * 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
(d) $\mathrm{Z}_{0}=\sqrt{\frac{Z}{Y}}=\sqrt{\frac{.3+\mathrm{j} 2}{\left.5 * 10^{-6}+\mathrm{j} .0006\right)}}=333.337-\mathrm{j}(490972)=337.062 \angle-.14$

3-24. For the coaxial cable of Problem 3-23, repeat the analysis at 100 MHz if the series resistance increases to $1 \Omega / \mathrm{m}$, but the shunt conductance remains essentially the same. (Note : You must apply basic ac circuit theory to determine the new values for the reactance and susceptance.) (Not Answered)

3-25. For the circuit of Fig. P3-25, determine the following:

$\alpha * d=.001 * 150=1.5$
$\beta * \mathrm{~d}=.004 * 150=.6$
(a) input current $\overline{\mathrm{I}}_{1}$
$\overline{\mathrm{I}}_{1}=\frac{E}{Z_{1}+z_{0}}=\frac{50 \angle 0}{300+290-j 60}=.799903+\mathrm{j} .081066=.084 \angle .101$
(b) input voltage $\overline{\mathrm{V}}_{1}$
$\overline{\mathrm{V}}_{1}=Z_{0} * \overline{\mathrm{I}}_{1}=(290-\mathrm{j} 60) *(.799903+\mathrm{j} .081066)=236.836-\mathrm{j} 24.485=238.098 \angle-.103$
(c) input power P_{1}
$\mathrm{P}_{1}=\left(\overline{\mathrm{I}}_{1}\right)^{2} * \mathrm{R}_{0}=(.084)^{2} * 290=2.04 \mathrm{w}$
(d) load current $\overline{\mathrm{I}}_{2}$

(e) load voltage $\overline{\mathrm{V}}_{2}$

(f) load power P_{2}
$\mathrm{P}_{2}=\left(\overline{\mathrm{I}}_{2}\right)^{2} * \mathrm{R}_{0}=(.01794)^{2} * 290=.0933 \mathrm{w}$
(g) line loss in dB
$\mathrm{L}_{\mathrm{db}}=10 \log _{10}\left(\frac{P_{1}}{P_{2}}\right)=10 \log 10\left(\frac{2.04}{.0933}\right)=13.41$

3-26. For the circuit of Fig. P3-26, determine the following: (Not sure)
$\alpha \frac{N_{p}}{m i}=\frac{\mathrm{Ldb}}{8.686 * d}=\frac{4}{8.686 * 6}=.077$
$\alpha * \mathrm{~d}=.077$ *6 =. 462
$\beta^{*} \mathrm{~d}=.5 * 6=.6$
(a) input current $\overline{\mathrm{I}}_{1}$

$$
\overline{\mathrm{I}}_{1}=\frac{E}{Z_{1}+z_{0}}=\frac{80 \angle 0}{1216<.165}=.0649-\mathrm{j} .010806=.0658 \angle-.165
$$

(b) input voltage \bar{V}_{1}

$$
\overline{\mathrm{V}}_{1}=z_{0} * \overline{\mathrm{I}}_{1}=(600+\mathrm{j} 100) *(.0649-\mathrm{j} .010806)=606.484+\mathrm{j} 38.94=607.732 \angle .064118
$$

(c) input power P_{1}

$$
1 \mathrm{P}_{1}=\left(\overline{\mathrm{I}}_{1}\right)^{2} * \mathrm{R}_{0}=(.0658)^{2} * 290=1.2556 \mathrm{w}
$$

(d) load current $\overline{\mathrm{I}}_{2}$
(e) load voltage \bar{V}_{2}
(f) load power P_{2}
(g) line loss in nepers

