NEW YORK CITY COLLEGE OF TECHNOLOGY

OF THE CITY UNIVERSITY OF NEW YORK

Department of Mechanical Engineering

Final Report

Group Project

Professor: Maya Date: December 16, 2010 Simulation and Visualization - IND 3350 Student: Shaul Ranglin Jude Francis Kyant Chow

Table of Contents

<u>Title</u>

Page

1.	Background	2
2.	Objective	3
3.	Scope	4-5
4.	Data Requirement	6
5.	Raw Data	7-8
6.	Collect & Analyze Data	9-10
7.	Using StarFit to Analyze Data	11-18
8.	Validate the Model	18
9.	Conduct Experiment	19-20
10.	Conclusion	21
11.	Reference	21

Background

UPS is a package delivery company that started in 1907. As of 2009, it has grown into a \$45.3 billion industry. There approximately 330,600 employees in the US and 70,000 internationally. UPS ships and delivers about 19.3 million packages and documents worldwide on daily basis.

UPS has taken the responsibility of being one of the top leaders in logistics and distribution. Logistics is the procurement, distribution, maintenance, and replacement of resources. The fulfillments that UPS has taken in logistics are:

- cross-docking
- pick and pack
- kitting
- final-stage assembly, configuration and programming
- store ready services
- order management
- vendor-managed inventory
- critical order fulfillment

Order fulfillment the important task of taking a customer's package into a warehouse facility and into the distribution network. This includes carrying out activities that are direct or indirect. These include stocking, receiving, processing, and shipping orders and customer support. UPS has also taking into account their system metrics. Warehousing and inventory management are part of utilization of personnel and queue levels.

UPS has recognized that there are three main factors that are driving new changes in the way companies view their supply chains and distribution centers: new technologies that are available, new transportation services, and customer demands. The pressure to reduce cost expenses are lead to believe that it will preserve "shrinking margins" and to respond to growth and competition that is happening worldwide. The need to provide higher level of customer service is also in demand. Customers want to know more about the system metrics (e.g. value-added services, delivery time, transactions) of the warehousing and distribution. Another demand is to enhance the responsiveness and reduce assets and costs.

Objectives

The simulation that is being studied is a local UPS facility. The facility is a warehouse distribution center used to receive all packages from local UPS stores, separate packages, and ship to their right destination. Simulation software was used to simulate the locations, entities, resources, and paths of the facility. It also was used to describe the structural data, operational data and numerical data. The simulation was scheduled based on a week day to obtain the productivities and output statics. The main purpose of evaluating the local facility is to improve the work flow planning, and product scheduling, processing time and the number of entities that process through the facility. In order for it to be considered successful, the simulation needs to be able to meet specific terms in these general categories:

- Identify the layout information about the facility.
- Identify the sequence of processing activities such as receiving area, cargo area and shipping areas and find the best layout based on minimizing travel time.
- Describe the data requirement in level of details.
- Determine what kind of machineries and tools are needed to meets the best performance for our objectives and the best speed to operate these machines in effective way.
- Improve the production scheduling and productivity improvement by using an idea of technology perspective views and computerizing.
- Analyze the overall flow of the system that needed to meet required production levels and time consumption.
- Come out with two different variations of the original configuration in order to improve the processing time of the entities.

Scope

Figure (1): Overall UPS Layout

The general process for domestic and some international packages in UPS first include the customer dropping an item off at a UPS store. The item is packaged, if not already, and an employee puts a smart label on the package. The smart label has barcodes that contain the information of the package and where the destination is. It scanned numerous times during every step of the way to the destination so that a computer can keep track of the package. After the package leaves the store, it travels by truck to a local warehouse facility. At the facility, packages go through sorting for domestic and international destinations. Packages that are travel over 200 miles are transported to regional sites where they are loaded onto planes. (Figure 1)

Figure (2): Overall system flow inside the local Facility

Figure (2) provides brief information about the UPS warehouse distribution. The warehouse distribution center has different processes and activities. The first area is the receiving area, where packages and envelops of different sizes are unload out trucks and transported to the storage area. Next the packages are loaded onto the conveyor belt that is programmed with cameras and sensors that help to guide the package in the right destination. If the destinations are over 200 miles the packages will be transported by plane, otherwise, they are delivered by UPS trucks. If the destination is less than 200 miles, the packages are sent to Local Receiving Areas which has 19 subdivision areas. These packages are loaded into Cargo Carries in the Cargo Area. Then the workers transport the fully loaded packages to the Shipping Area. Finally, the UPS employees load the packages out of cargo into trucks for shipping.

The system will be narrowed down and scoped so that there will be a concentration on the Local Receiving Areas, Cargo Areas and Shipping Area. There will be 19 subdivision locations in the Receiving Area, and interest will be taken on that one location. Different size packages and envelopes are coming into the system, however only the volume of packages will be considered.

Requirements

The data can be categorized as structural data, operational data, and numerical data:

Structural data involves all the objects in the facility to be modeled. Structural information describes the layout of the local facility as well as identifying the items that are processed. System elements are incoming packages, UPS employees, and locations such as receiving area, cargo area, and shipping dock.

Operational data explains how the warehouse operates and it consists of all the logical information about the system such as routing, schedules, and downtime. Incoming packages are coming into the Receiving areas and employees combine 162 packages to single entities. Employees load onto Empty Cargo and ship to shipping dock.

Numerical data provides quantitative information about the system. The amount of volume of packages that arrive and ship out of the system on a weekday needs to be determined. Also, it requires the arrival rate of incoming package which is done by automatic machines. For example, the packages are coming into Receive Areas every second or 1 minute. Data is needed to define the number of UPS employees are considered necessary to meet the best performance objectives. The number of UPS employees depends on specified location. For example, there will be two employees at receiving area, one employee at Cargo area, and three at the shipping dock.

Other system data has to determine the time and resource requirements for each operation and activity. With this data the amount of time is needed to see how long it takes to combine 162 packages, load packages onto Cargo, cargo travel times, and unload and loading the packages at shipping dock.

Date:	Tue	esday		W/E 11/13	3/2	010]					
		Plan		Act		Plan	Act	1		Plar	1	Act
Total Vo	olume	78639)	81168		1852		AM/Driver	•	0.28	3	0.33
Tota	al S/A	5112		5276		7.90		Ttl Loads:		369)	358
Cargos	s Vol:	259		258.75				Total AM Ho	urs:	103.3	32	117.69
Load Cargo	(min)	10.11	-	10.95				Belt Stops				
Travel Time	(min)	10.28		11.58				DMS Vol		7824	-6	
Unload Time	(min)	5.28		6.28				%Spa'd		99.59	%	0.0%
Load Time	(min)	5.30		7.25				%DA		5.0%	6	4.0%
Start Dalt Dur	Time	3.25		3.25								
Ground Down	Time	4.48		5.00			Sum	maries	Р	lan		Act
Total St	affing	7.90		8.25			Prima	ry PPH	17	3.90		172.02
Fotal Staffing	MSD:	185					Belt	PPH	16	0.48		162.70
		182					SL F	Hours:	92	2.74		950.41
·			Total v			tal w/AM Hours: 1				10.68.10		
							Buildi	ng PPH:	7	6.6		76.6

	FSP's	& PSP's	AM	Time	AM Hours				
Center	Plan	Report	Plan	Report	Plan	Report	Excess		
1122	80	78	0.28	0.35	22.40	27.30	4.90		
1123	67	63	0.28	0.31	18.76	19.53	0.77		
1124	68	65	0.28	0.26	19.04	16.90	-2.14		
1125	78	76	0.28	0.39	21.84	29.64	7.80		
1126	76	76	0.28	0.32	21.28	24.32	3.04		
	369	358	0.28	0.33	103.32	117.69	14.37		

	PRIMARY STATISTICS															
		% Tot	Volu	ime		Staffing			PPH		% Effe	ctive		,	Гime	
ET SUDEDVISOD		Vol	Plan	Act	MSD	Plan	Act	MSD	Plan	Act	Plan	Act	Plan	Act	Excess	Should Use
11 SULER VISOR	Unload	100%	75250	77670	13	14	15	1287	1171	1158	91	90	64.25	67.08	0.76	66.32
Blount	Sort	127.5%	100265	99029	19	19	18	1194	1198	1196	100	100	83.72	82.81	0.12	82.69
Narain Blount	SPA	72.5%	54556	56311	13	14	15	907	844	837	93	92	64.68	67.29	0.53	66.76
Diount	Total		75250	77670	45	47	48	371	354	358	95	96	212.65	217.18	1.41	215.77

76.6

76.6

% Tot	Vol	ume		Staffing			PPH		% Effe	ctive		1	Time	
Vol	Plan	Act	MSD	Plan	ACT	MSD	Plan	Act	Plan	Act	Plan	Act	Excess	Should Use
21.7%	17065	17613	4	4	3	1017	1011	1057	99	104	16.88	16.67	-0.75	17.42
1.2%	904	933	10	10	8	20	20	20	99	102	45.49	45.95	-1.00	46.95
40.0%	31456	32467	21	21	17	327	327	339	100	104	96.19	95.83	-3.46	99.29
4.0%	3146	3247	4	5	5	165	145	145	88	88	21.66	22.36	0.00	22.36
11.6%	9122	9415	2	2	2	981	981	939	100	96	9.30	10.03	0.43	9.60
32.9%	25872	26704	1	1	1	5556	5556	5805	100	104	4.66	4.60	-0.21	4.81
6.5%	5112	5276	4	4		300	300	283	100	94	17.04	18.63	1.04	17.59
2.0%	1573	1623	2	2	6	200	178	80	89	40	8.84	20.27	11.15	9.12
	94249	97280	48	49	42	444	428	415	97	94	220.06	234.34	7.20	227.14

BELT STATISTICS

	% Tot	Vol	ume		Staffing			PPH		% Ef	fective		,	Гime		
	Vol	Plan	Act	MSD	Plan	ACT	MSD	Plan	Act	Plan	Act	Plan	Act	Excess	Should Use	Recycle
Belt #1	6.3%	4960	5129	6	6	6	155	154	162	99%	105%	32.01	32.53	-1.75	34.28	
Belt #2	6.4%	5011	5459	6	6	6	168	167	168	99%	100%	30.01	32.56	-0.13	32.69	
Belt #3	6.6%	5155	6053	6	6	7	160	159	164	99%	102%	32.41	37.01	-1.05	38.06	
Belt #4	10.4%	8156	7775	10	10	8	160	159	167	99%	104%	51.28	46.58	-2.31	48.89	
Belt #5	11.9%	9333	9127	11	11	11	165	164	165	99%	100%	56.90	55.44	-0.21	55.65	
Belt #6	7.3%	5733	5715	7	7	7	163	162	158	99%	97%	35.39	36.27	1.00	35.27	
Belt #7	9.3%	7287	7980	9	9	9	158	157	159	99%	100%	46.40	50.29	-0.52	50.81	
Belt #8	11.0%	8664	8903	10	10	10	158	157	150	99%	95%	55.16	59.33	2.64	56.69	
Belt #9	8.2%	6478	6339	7	7	7	168	167	189	99%	112%	38.79	33.56	-4.40	37.96	
Belt #10	8.7%	6853	7967	8	8	9	158	157	160	99%	101%	43.64	49.87	-0.86	50.73	
Belt #11	9.8%	7709	8764	9	9	10	156	155	158	99%	101%	49.72	55.55	-0.97	56.52	
1123 MDC	2.2%	1733	1804	2	2	2	178	179	182	100 %	102%	9.69	9.90	-0.19	10.09	
1126 MDC	2.0%	1509		2	2		184	185		100 %		8.62		0.00	0.00	
Total	100%	78639	81168	93	93	92	161	160	163	99%	101%	490.03	498.89	-8.74	507.63	0

CENTER SUMMARIES

		Volu	me		Staff	ing			PPH			Т	ïme	
Belt	Center	Plan	Act	MSD	Plan	Act	Diff	Plan	Act	Diff	Plan	Act	Excess	Should Use
4/5	1122	17489	16902	21	21	19	-3.23	134	131	-3.23	130.59	129.32	3.12	126.20
6/6/M	1123	13944	13858	16	16	16	-0.89	26	25	-0.89	535.34	550.78	18.75	532.03
1/2/3	1124	15098	16794	18	18	19	8.07	133	141	8.07	113.47	119.00	-7.22	126.22
7/8	1125	15951	16883	19	19	19	-8.02	129	121	-8.02	123.41	139.26	8.64	130.62
10/11 LVD2-	1126	16157	16731	19	19	19	-2.13	131	129	-2.13	123.26	129.74	2.10	127.64
LVDS		0		0	0		0.00	0		0.00	0.00		0.00	0.00
	Total	78639	81168	93	93	92	-0.65	76.6	76	-0.65	1026.06	1068.1	25.39	1042.71

BELT # 1 STATISTICS

Time

Belt 4/5 6/6/M 1/2/3 7/8

Γ

Belt	Term	Volu	ime	Sta	ffing	Load	l Trailer	Tr	avel	Unle	bad	Ttl L	oad
4/5		Plan	Act	Plan	Act	Plan	Act	Plan	Act	Plan	Act	Plan	Act
6/6/M	#1	155	163.13	6	6	10	8.91	10	10.88	6	5.23	6	5.27
1/2/3	#2	155	156.99	6	6	10	8.23	10	10.01	6	6.77	6	5.64
1/8	#3	155	159.03	6	6	10	10.12	10	8.11	6	6.28	6	5.17
IWD'a	#4	155	161.02	6	6	10	9.15	10	8.29	6	5.00	6	5.05
	#5	155	162.22	6	6	10	10.21	10	11.57	6	5.45	6	5.71
	#6	155	156.02	6	6	10	10.53	10	11.54	6	5.82	6	5.68
	#7	155	158.98	6	6	10	10.69	10	10.52	6	5.03	6	6.60
	#8	155	160.15	6	6	10	8.36	10	8.19	6	5.94	6	5.02
	#9	155	164.55	6	6	10	10.63	10	8.33	6	6.36	6	6.58
	#10	155	157.92	6	6	10	8.95	10	8.82	6	6.88	6	6.08
	#11	155	160.33	6	6	10	10.60	10	8.98	6	5.97	6	5.33
	#12	155	162.72	6	6	10	8.59	10	8.11	6	6.28	6	6.12
	#13	155	159.41	6	6	10	10.01	10	10.69	6	5.08	6	6.97
	#14	155	160.49	6	6	10	8.54	10	8.68	6	6.70	6	6.01
	#15	155	158.32	6	6	10	8.95	10	9.61	6	5.02	6	6.62
	#16	155	161.38	6	6	10	8.77	10	10.14	6	5.59	6	6.89
	#17	155	164.38	6	6	10	10.07	10	8.58	6	5.54	6	5.03
	#18	155	164.17	6	6	10	10.23	10	10.98	6	5.55	6	5.76
	#19	155	157.58	6	6	10	8.34	10	11.51	6	6.25	6	5.30
	#20	155	161.21	6	6	10	10.22	10	11.96	6	6.76	6	6.69
	#21	155	162.71	6	6	10	8.42	10	8.87	6	6.89	6	5.26
	#22	155	159.41	6	6	10	9.30	10	11.37	6	6.81	6	6.03
	#23	155	156.30	6	6	10	8.53	10	11.07	6	5.26	6	5.04
	#24	155	159.32	6	6	10	10.28	10	11.07	6	5.87	6	6.06
	#25	155	163.57	6	6	10	10.14	10	8.95	6	5.61	6	5.08
	#26	155	159.75	6	6	10	9.17	10	8.07	6	5.69	6	5.62
	#27	155	159.73	6	6	10	8.91	10	10.47	6	6.69	6	5.94
	#28	155	158.14	6	6	10	9.48	10	8.59	6	5.07	6	5.24
	#29	155	157.66	6	6	10	10.79	10	11.23	6	6.66	6	6.83
	#30	155	158.90	6	6	10	9.56	10	10.45	6	6.73	6	5.89
Γ	#31	155	162.85	6	6	10	10.76	10	11.63	6	5.82	6	6.37
	#32	155	162.77	6	6	10	9.41	10	10.39	6	6.02	6	6.03
	Total	4960	5129.42	6	6	10	294.05	10	315.76	6	189.89	6	187.18

*iSpa staffing should only be counted once in primary

Average										
Volu	ıme	Т	ime							
Plan	Act	Plan	Act							
155	162.77	32	32.53							

CENTER SUMMARIES

		Volu	ime		Staff	ing			PPH			Т	ime	
Belt	Center	Plan	Act	MSD	Plan	Act	Diff	Plan	Act	Diff	Plan	Act	Excess	Should Use
4/5	1122	17489	16902	21	21	19	-3.23	134	131	-3.23	130.59	129.32	3.12	126.20
6/6/M	1123	13944	13858	16	16	16	-0.89	26	25	-0.89	535.34	550.78	18.75	532.03
1/2/3	1124	15098	16794	18	18	19	8.07	133	141	8.07	113.47	119.00	-7.22	126.22
7/8	1125	15951	16883	19	19	19	-8.02	129	121	-8.02	123.41	139.26	8.64	130.62
10/11	1126	16157	16731	19	19	19	-2.13	131	129	-2.13	123.26	129.74	2.10	127.64
LVD'S		0		0	0		0.00	0		0.00	0.00		0.00	0.00
	Total	78639	81168	93	93	92	-0.65	76.6	76	-0.65	1026.06	1068.1	25.39	1042.71

 MSD
 Plan

 182
 185

Act 182

Total Staffing

Staf	fing	
	Plan	Act
Assigned	250	
Planned Absent	20	
Unplanned Absent	25	
Available	215	
Average		

Collect and Analyze Data

Structural Data

UPS Warehouse's Layout

Figure 3

In the simulation the packages will be the entities and incoming quantities represent the volumes. The total volume will be 78,639 and distribute to 19 bases according to their destinations. Our group will focus only base 1 and it has Initial Volume of 5129. Time is based on 16 hours consumptions which is two shifts. There will be five locations such as Incoming Package_Q, Receiving Area, Shipping_Q, Shipping Dock and Cargo_Q. Resources are UPS employers who will perform the task in the system. The total staffing in base one is six employees. Two employers in Receiving Areas are loading packages into Cargo container, and one worker will move the full loaded cargo to shipping dock. Three employers are in Shipping Dock, 2 are unloading and 1 is loading packages into UPS truck. The same person who brings the full load cargo to shipping back empty cargo back to receiving area.

Process Description for UPS Warehouse Distribution

The total initial volumes at Receiving Area are 5129, and 2 employees start to load the average of 162 packages onto empty Cargos and it takes about 10 minutes, and when the full

Location	Activity Time	Activity Resource	Next Location	Move Resource
Incoming Packages	0.185 Volume of packages occur every minute	Machinery	Incoming	None
Receiving Area Loading	Uniform distribution U(9.55,1.2)	2 Employee	Shipping_Q	None
Shipping_Q	Uniform Distribution U(9.92,1.85)	1 Employee	Shipping Dock	Employee
Shipping Dock Unloading packages	Uniform Distribution U (5.95,0.95)	2 Employee	Empty Cargos Travel back to Receiving Area	Employee
Shipping Dock Loading onto UPS Trucks	Exponential Distribution E(5.84)	1 Employee	UPS Truck	None

loaded cargo departure to shipping_Q, the workers continue to load the packages into another empty cargo. One worker beings to move the full loaded Cargo to Shipping Dock and the travel time is about the average of 10 minutes. After the Cargo is dropped, the extra empty cargo is returned to the receiving area. Two employees at Shipping Dock are unloading the packages from the Cargos and it takes about the average of 6 minutes. One employee starts to load the packages onto a waiting truck and its loading time is about the average of six minutes.

Using **StarFit** to analyze Raw Data

1. Statistical Analysis of Numerical Data

I. Receiving Area has (19 Bases)

Base 1

Employers load the incoming packages (average of 162 volumes) onto empty Cargos and observed loading packages volume

32 Observed loading Volume package onto Cargo			
$\begin{array}{c} 163.13\\ 156.99\\ 159.03\\ 161.02\\ 162.22\\ 156.02\\ 158.98\\ 160.15\\ 164.55\\ 157.92\\ \end{array}$	$ \begin{array}{r} 160.33\\ 162.72\\ 159.41\\ 160.49\\ 158.32\\ 161.38\\ 164.38\\ 164.17\\ 157.58\\ 161.21\\ \end{array} $	$\begin{array}{c} 156.30 \\ 159.32 \\ 163.57 \\ 159.75 \\ 159.73 \\ 158.14 \\ 157.66 \\ 158.90 \\ 157.66 \\ 158.90 \end{array}$	
	159.41	162.77	

Auto::Fit of Dis	tributions		
distribution		rank	acceptance
Uniform(156, 165) Lognormal(156, 1.1 Exponential(156, 4.	5, 1.15) 35)	100 0.424 0.287	do not reject reject reject
	tistics	method of m	oments estimates
data points minimum maximum mean median mode standard deviation variance coefficient of variation skewness kurtosis	32 156.02 164.55 160.347 159.95 159.525 2.41783 5.84591 1.50787 0.111003 -1.05714	Exponential minimum beta Lognormal minimum mu sigma Uniform minimum maximum	 = 156. [fixed] = 4.34719 = 156. [fixed] = 1.33477 = 0.519156 = 156. [fixed] = 164.55

II. Receiving Area

Employers load the incoming packages (average of 162 volumes) onto empty Cargos and observed loading time in minutes

32 Observed loading package onto Cargo Time in Minutes			
9.01	10.60	0.20	
8.91	10.60	9.30	
8.23	8.59	8.53	
10.12	10.01	10.28	
9.15	8.54	10.14	
10.21	8.95	9.17	
10.53	8.77	8.91	
10.69	10.07	9.48	
8.36	10.23	10.79	
10.63	8.34	9.56	
8.95	10.22	10.76	
	8.42	9.41	

Auto::Fit of Distributions		
distribution	rank	acceptance
Uniform(8., 10.8)	100	do not reject
Lognormal(8., 0.227, 0.711)	42.7	do not reject
Exponential(8., 1.55)	5.19	reject

Shipping

Shipping_Q Fully loads of packages are moving to Shipping Docks and observed traveling time in minutes.

32 Observed Shipping Time in Minutes			
10.00	8.09	11.27	
10.88	8.98	11.37	
10.01	8.11	11.07	
8.11	10.69	11.07	
8.29	8.68	8.95	
11.57	9.61	8.07	
11.54	10.14	10.47	
10.52	8.58	8.59	
8.19	10.98	11.23	
8.33	11.51	10.45	
8.82	11.96	11.63	
	8.87	10.39	

Auto::Fit of Distr	ibutions		
distribution		rank	acceptance
Uniform(8., 12.) Lognormal(8., 0.213,	1.16)	100 5.25	do not reject reject
descriptive sta	tistics	method of i	moments estimates
data points minimum maximum mean median mode standard deviation variance coefficient of variation skewness kurtosis	32 8.07 11.96 9.92687 10.265 8.07 1.3047 1.70224 13.1431 -9.24042e-002 -1.61358	Lognormal minimum mu sigma Uniform minimum maximum	= 8. [fixed] = 0.467204 = 0.614321 = 8. [fixed] = 11.96

III. Unload Packages from Cargo Time in Minutes

32 Observed Unload Time in Minutes			
5.23	5.97	6.81	
6.77	6.28	5.26	
6.28	5.08	5.87	
5.00	6.70	5.61	
5.45	5.02	5.69	
5.82	5.59	6.69	
5.03	5.54	5.07	
5.94	5.55	6.66	
6.36	6.25	6.73	
6.88	6.76	5.82	
	6.89	6.02	

Auto::Fit of Distributions		
distribution	rank	acceptance
Uniform(5., 6.89) Exponential(5., 0.957) Lognormal(5., -0.429, 1.2)	100 12.5 5.96	do not reject do not reject <mark>reject</mark>

32 Observed Unload Time in Minutes			
5.27	5.33	6.03	
5.64	6.12	5.04	
5.17	6.97	6.06	
5.05	6.01	5.08	
5.71	6.62	5.62	
5.68	6.89	5.94	
6.60	5.03	5.24	
5.02	5.76	6.83	
6.58	5.30	5.89	
6.08	6.69	6.37	
	5.26	6.03	

I. Load Packages into Waiting UPS Truck Time in Minutes

Auto::Fit of Distrib	utions		
distribution		rank	acceptance
Exponential(5., 0.841) Uniform(5., 6.97) Lognormal(5., -0.686,	Exponential(5., 0.841) 100 do not Uniform(5., 6.97) 19.5 do not Lognormal(5., -0.686, 1.28) 11. do not		do not reject do not reject do not reject
descripti∨e sta	tistics	descriptive	statistics
data points minimum maximum mean median mode standard deviation variance coefficient of variation skewness kurtosis	32 5.02 6.97 5.84094 5.825 5.02 0.614971 0.378189 10.5286 0.28795 -1.17118	data points minimum maximum mean median mode standard deviation variance coefficient of variation skewness kurtosis	32 5.02 6.97 5.84094 5.825 5.02 0.614971 0.378189 10.5286 0.28795 -1.17118

Validate the Model

Compare the ProModel Against original raw data

	Time (hour)	Original Raw Data	ProModel Output Data	% Difference
Total Entities	1	324	325.22	0.37%
	16	5129	5189	1.17%
# No Trucks	1	2	2	
	16	32	32	

According to the software result, 5189 packages are processed through the system within 16 hours and 32 trucks had left the warehouse. The original raw data has 5129 packages and 32 trucks had left the warehouse. The difference between the two results for total entities is 0.37% for 1 hour and 1.17% for 16 hours.

Conduct Experiments

Create two different variations of the original configuration in order to improve the processing time of the entities. Improvements do not include the number of employees. Our changes will be the overall flow of the system.

Variation I

Brief Description

Incoming packages will be directly sent to shipping dock. As a result, there will be reduced amount of the locations such as Receiving Area, Cargo_Q, Shipping_Q, and Cargo Area. There will be five new locations such as incoming package, incoming_Q, loading area, and shipping. Three employees will unload incoming packages from belt and other three employees will load onto UPS truck.

Figure (4): Variation I

	Time in hour	Variation I output
Total Entities	1	500
(Packages)	16	8000
# No Trucks	1	4
	16	48

Variation II

Brief Description

In variation II, more paths will be added in the overall flow of the entities. Incoming packages will be directly sent to the shipping dock and instead of having six employees loading for one truck, there will be three UPS trucks at Shipping docks, and two employees for each trucks.

Figure (5): Variation II

	Time in hour	Variation II output	
Total Entities	1	967	
(Packages)	16	15,483	
# No Trucks	1	6	
	16	96	

Data Comparison

	Time in hour	Original	ProModel Simulation	Variation I	Variation II
		Configuration	From Original		
Total Entities	1	324	325.22	500	967
(Packages)	16	5129	5189	8000	15,483
# No Trucks	1	2	2	4	6
	16	32	32	48	96

According to our Data Comparison table the changes in overall flow of the system will improve the processing time of the entities.

Conclusion

Simulation involves frame work, collecting and analyzing data. Simulation models are usually done using computer software to imitate the dynamic system of how elements in practical condition and how they interact each other. From this software a conceptual model was converted into a simulation model. The software ProModel was used to simulate the UPS local facility in order to improve the work flow planning and product scheduling. This project applies to a highly technology world because the whole universal creates as a system which how collection of elements work together. For example, UPS local facility has so many elements that work together. The activities and processing are interdependencies and variability makes up the system complexity. In order to control the cost reduction, software like ProModel improve the overall system. Data is very important when the system is being model because it is a main input resource, and invariable data makes the model a failure.

References

Harrell, Charles, Biman K Ghosh, and Royce O Bowden Jr. *Simulation using ProModel*. Boston: McGraw Hill Higher Education, 2004.

The American Heritage Dictionary of the English Language . Boston: Houghton Mifflin Company, 1976.

Wilson, Tracy V.. "How UPS Works" 01 November 2006. HowStuffWorks.com. http://money.howstuffworks.com/ups.htm 15 December 2010.

UPS. 2009. http://www.pressroom.ups.com/Fact+Sheets/UPS+Fact+Sheet (accessed December 10, 2010).