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Alice would like to send Bob a message in a way that Eve is not able to
understand it

Fundamental since the ancient times
Now it is even more important

I Buy/sell things online
I Wireless devices
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Information is just numbers

In our digital world information is represented by strings of ciphers

How to hide a number?
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CLASSIC (SYMMETRIC) CRYPTOGRAPHY

PLAINTEXT: ‘true’ message that Alice wants to send Bob,
Everybody can understand it

CYPHERTEXT: message after encryption

ENCRYPTION: process which transforms plaintext into ciphertext

DECRYPTION: process which transforms ciphertext into plaintext
again

CRYPTOGRAPHIC KEY: ‘piece of information’ that determines the
output of a cryptographic algorithm



An example: CAESAR CIPHER

Extant et ad Ciceronem, item ad familiares domesticis de rebus, in quibus,
si qua occultius perferenda erant, per notas scripsit, id est sic structo
litterarum ordine, ut nullum verbum effici posset: quae si qui investigare et
persequi velit, quartam elementorum litteram, id est D pro A et perinde
reliquas commutet.
(Svetonio, De Vita Caesarum)

science 7→ vfnhqfh
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An example: CAESAR CIPHER

From a mathematical point of view . . .

1 Letters 7→ Numbers

A B C D . . . X Y Z

0 1 2 3 . . . 23 24 25

2 ENCRYPTION: X is sent to X + 3 (mod 26)

3 Key?

3
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An old way. . . still used by Mafia

(Provenzano’s “pizzini”)

Provenzano frowned upon the use of
telephones and issued orders and
communications (even to his family)
through small, hand-delivered notes
called pizzini. Provenzano used a
version of the Caesar cipher, used by
Julius Caesar in wartime
communications.
WIKIPEDIA



CAESAR CIPHER: problems

Few possible Keys: possible brute-force attack

CAESAR CIPHER is just a substitution: every letter is encrypted
always in the same way. Possible frequency analysis

Frequency analysis is based on the fact that, in any given stretch of
written language, certain letters and combinations of letters occur with
varying frequencies. Moreover, there is a characteristic distribution of
letters that is roughly the same for almost all samples of that language.

Possible solution:
Use a word, a sentence, or a book as key
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How to use a word as key

S E E Y O U T O M O R R O W

18 4 4 24 14 20 19 14 12 14 17 17 14 22

H E L L O H E L L O H E L L

7 4 11 11 14 7 4 11 11 14 7 4 11 11

25 8 15 9 2 1 23 25 23 2 24 21 25 7

Z I P J C B X Z X C Y V Z H

The longer the key, the more difficult the frequency analysis

1 key: sequence of numbers

2 same letter is moved to different letters depending on its position

3 if the key is as long as the message then the cipher is perfect

A perfect cipher is defined as a cipher in which, if an attacker intercepts
the ciphertext, it receives no information about the message being sent.
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So . . . we are done!!!
If we can use a key as long as the message, our method is perfect! But. . .

ALICE and BOB must share the key!

HOW TO SHARE THE KEY?

Sometimes this is really impossible. . .

WHATSAPP cannot understand what ALICE and BOB say

Everybody can talk with everybody

More than 109 customers!!!
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Solution: ASYMMETRIC CRYPTOGRAPHY

TWO different keys: one key to encrypt, one key to decrypt

key to encrypt is PUBLIC: everybody can use it

key to decrypt is PRIVATE: only who receive the cypher-text knows it

IMPOSSIBLE to recover PRIVATE key for PUBLIC key



IMPOSSIBLE TO GO BACK

Main tool: use something which makes not possible for EVE to know
PRIVATE key of BOB knowing his PUBLIC key

What do we mean for IMPOSSIBLE?

COMPUTATIONALLY impossible, i.e. impossible in a useful amount of
time



ACTIONS impossible to invert: some examples

To know the phone number of a person
using the phone book knowing his/her name:

=⇒ EASY

To know the name of a person using the phone
book knowing his/her phone number:

=⇒ IMPOSSIBLE!



ACTIONS impossible to invert: some examples
To prepare a cake
following its recipe:

=⇒ “EASY”

To know the recipe of a cake
after eating the cake

=⇒ IMPOSSIBLE!

?

Do you the most secret recipe in the world?
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ACTIONS impossible to invert: mathematics

Discrete Logarithm (Logarithm over finite fields)

Real Logarithm is easy to compute or to approximate

213 = 8192, 214 = 16384 =⇒ log2(13321) ∈ ]13, 14[

Discrete Logarithm is hard to compute
the best strategy is to try all the possibilities until it is right
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Finite fields

Definition (roughly. . . )

A finite set F with two operations ⊕ and � satisfying “nice” rules (as in
the real case)

Associativity

Commutativity

Existence neutral element

Existence of the inverse (opposite) for each non-zero element



Finite fields: an example

F5 = {0, 1, 2, 3, 4}

⊕ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

� 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

A⊕ B = C (mod 5) A� B = C (mod 5)



Diffie-Hellman’s protocol

Alice wants to send Bob a message

Alice and Bob want to share a secret which will be their secret key (in
symmetric cryptography)



Diffie-Hellman’s protocol

Chooses a number A

Chooses an exponent b

Computes Ab

Bob publishes A and Ab

Bob keeps b secret

Chooses an exponent c

Computes Ac

Sends Bob Ac

Alice and Bob both know Abc = (Ac)b =
(
Ab
)c

Eve can read A, Ab, Ac but cannot compute Abc !
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The importance of permutations: AES

The Advanced Encryption Standard (AES) is a specification for the
encryption of electronic data established by the U.S. National Institute of
Standards and Technology (NIST) in 2001

AES has been adopted by the U.S. government and is now used
worldwide

It supersedes the Data Encryption Standard (DES)

AES is a symmetric-key algorithm

It is organized in rounds divided into different steps

One of these steps is a (non-linear) substitution: S-Box



Tools from finite fields: permutation polynomials

In DES or AES some in some of the rounds there are permutations over
finite fields

Definition (Permutation Polynomial)

A Permutation Polynomial is a polynomial f (x) with coefficients in Fq

such that c 7→ f (c) is a permutation (invertible) of Fq

F5 f (x) = 3x3 + 2x2 + x + 4 ∈ F5[x ]

Remark

Since Fq is finite it is enough to check if c 7→ f (c) is injective (or
surjective) or not



Permutation polynomials

Example

Consider f (x) = x + 3 ∈ F5[x ]

⊕ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

f (x) = x + 3 ∈ F5[x ] is a Permutation Polynomial

Exercise

Prove that any polynomial

f (x) = Ax + B ∈ F5[x ], with A,B ∈ F5, A 6= 0

is a Permutation Polynomial
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Permutation polynomials

Example

Consider f (x) = x2 ∈ F5[x ]

f (0) = 0, f (1) = 1, f (2) = 4, f (3) = 4, f (4) = 1

it is not a Permutation Polynomial



Known families of PP

Monomials: xn PP ⇐⇒ (n, q − 1) = 1

Dickson :

Dn(x , a) =

bn/2c∑
i=0

n

n − i

(
n − i

i

)
(−a)ixn−2i ∈ Fq[x ]

(
∀x 6= 0 Dn

(
x +

a

x
, a
)

= xn +
(a
x

)n)
PP ⇐⇒ (n, q2 − 1) = 1

Linearized polynomials

n−1∑
s=0

asx
qs ∈ Fqn [x ] PP ⇐⇒ det


a0 a1 · · · an−1

aqn−1 aq0 · · · aqn−2
...

...
...

aq
n−1

1 aq
n−1

2 · · · aq
n−1

0

 6= 0



Permutation Polynomials and Curves over finite fields

Definition (Affine plane)

AG (2, q) := {(a, b) : a, b ∈ Fq}

Example (AG (2, 5))

(4, 0) (4, 1) (4, 2) (4, 3) (4, 4)
(3, 0) (3, 1) (3, 2) (3, 3) (3, 4)
(2, 0) (2, 1) (2, 2) (2, 3) (2, 4)
(1, 0) (1, 1) (1, 2) (1, 3) (1, 4)
(0, 0) (0, 1) (0, 2) (0, 3) (0, 4)

Definition (Curve)

C in AG (2, q) Curve ⇐⇒ polynomial F (X ,Y ) ∈ Fq[X ,Y ]

2X + 7Y 2 + 3 ⇐⇒ 4X + 14Y 2 + 6
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Permutation Polynomials and Curves over finite fields

f (x) ∈ Fq[x ] =⇒ Cf : f (X )− f (Y ) = 0

Consider f (x) = x2 ∈ F5[x ] 7→ Not a PP

Cf : X 2 − Y 2 = 0

(4, 0) (4, 1) (4, 2) (4, 3) (4, 4)
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Permutation Polynomials and Curves over finite fields

Consider f (x) = x3 ∈ F5[x ]

7→ it is a PP since (3, q − 1) = (3, 4) = 1

Cf : X 3 − Y 3 = 0

(4, 0) (4, 1) (4, 2) (4, 3) (4, 4)
(3, 0) (3, 1) (3, 2) (3, 3) (3, 4)
(2, 0) (2, 1) (2, 2) (2, 3) (2, 4)
(1, 0) (1, 1) (1, 2) (1, 3) (1, 4)
(0, 0) (0, 1) (0, 2) (0, 3) (0, 4)

Theorem

f (x) ∈ Fq[x ] is PP ⇐⇒ Cf : f (X )− f (Y ) = 0
has only points (a, a), a ∈ Fq
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