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background: Sampling Distribution of the Mean

I For a random sample X1,X2, ...Xn

define the sample mean

I X̄ :=
∑n

i=1 Xi

n

I and the sample variance is

I S2 :=
∑n

i=1(Xi−X̄)
2

n−1

I These are RVs whose values depend on a random sample:
they are examples of statistics.

I The following three theorems refer to the distribution of the
sample mean for a given sample size n.
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First theorem

These theorems apply to the distribution of sample mean for
random samples taken from a random variable X , sampling
from an infinite population with mean µ and standard
deviation σ.

Theorem
If X1,X2, . . . ,Xn is a random sample of size n, then the
distribution of the sample mean X̄ has mean µX̄ = µ and standard
deviation σX̄ = σ√

n
.

Note: The standard deviation of the sample means, σX̄ , is also
called the standard error of the mean.



Second theorem

These theorems apply to the distribution of sample mean for
random samples taken from a random variable X , sampling
from an infinite population with mean µ and standard
deviation σ.

I Theorem
Central Limit Theorem
If X1,X2, . . . ,Xn is a random sample of size n, then as n→∞, the
distribution of the sample mean X̄ approaches a normal
distribution with mean µX̄ = µ and standard deviation σX̄ = σ√

n
.

I Another way to say the same thing: The statistic

Z =
X̄ − µ
σ/
√
n

has a distribution which approaches the standard normal
distribution as n→∞.
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Return to Example 1 to illustrate what these say:

Recall that X represents the actual weight of the coffee in an
“8-ounce” can of coffee, and let us assume that X has normal
distribution. Suppose also that µ = µX = 8.0 and σ = σX = 0.3.

I Theorem 1 tells us that for samples of size 25 taken from this
population, the sample means will have mean µX̄ = 8.0 and
standard deviation σX̄ = 0.3√

25
= 0.06.

I We can think of this as saying that the average sample mean
is the same as the average weight of the coffee in the cans,
and its standard deviation is small (only one-fifth of the
standard deviation of the weights).

I Also, if we would increase the sample size to 100, the
standard deviation of the sample means (standard error of the
mean) would decrease to σX̄ = 0.3√

100
= 0.03 So by taking

larger samples we can make the standard error of the mean as
small as desired.
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Return to Example 1 to illustrate what these say
(continued):

Recall that X represents the actual weight of the coffee in an
“8-ounce” can of coffee, and let us assume that X has normal
distribution. Suppose also that µ = µX = 8.0 and σ = σX = 0.3.

I Theorem 2 tells us that the sample means also have a
distribution which is close to a normal distribution for large
enough n. In practice, as a rule of thumb, we use this result
when n ≥ 30 (but this can be relaxed, especially if the
distribution of X is not too far from normal).



Return to Example 1 to illustrate what these say
(continued):

Recall that X represents the actual weight of the coffee in an
“8-ounce” can of coffee, and let us assume that X has normal
distribution. Suppose also that µ = µX = 8.0 and σ = σX = 0.3.

I Theorem 3 tells us that since the distribution of the weights is
normal, then the distribution of the sample means is also
normal regardless of n - Theorem 2 is not needed in this case!


