1. (a) $\mu_{X}=\frac{45}{11}$
(b) $\sigma_{X}^{2}=E\left(X^{2}\right)-\mu^{2}=\frac{979}{55}-\left(\frac{45}{11}\right)^{2} \approx 1.064$
(c) $\sigma_{X} \approx 1.032$
2. Let X be a RV with probability density $f(x)=\frac{x}{8}$ for $0 \leq x \leq 4$
(a) $\mu_{X}=\frac{8}{3}$
(b) $\sigma_{X}^{2}=E\left(X^{2}\right)-\mu^{2}=8-\left(\frac{8}{3}\right)^{2}=\frac{8}{9}$
(c) $\sigma_{X}=\frac{\sqrt{8}}{3}=\frac{2 \sqrt{2}}{3}$
3. (a) $b(6 ; 10,0.6)=\binom{10}{6}(0.6)^{6}(0.4)^{4} \approx 0.2508$
(b) $\mu_{x}=6$
(c) $\sigma_{X}^{2}=2.4$
(d) $\sigma_{X} \approx 1.549$
4. $1-P(X=0)=1-\frac{\binom{475}{5}}{\binom{500}{5}}$
5. (a) $p(0 ; 3)+p(1 ; 3) \approx 0.0498+0.1494 \approx 0.1992$
(b) $\int_{2 / 5}^{\infty} 3 e^{-3 x} \mathrm{~d} x=e^{-6 / 5} \approx 0.3012$
6. 5% of the flash drives coming off a certain assembly line will fail within 10 hours of use. Suppose we look at 20 randomly selected flash drives produced by this assembly line.
(a) $\left.b(0 ; 20,0.05)+b(1 ; 20,0.05)=\binom{20}{0}(0.05)^{0} 0.95\right)^{20}+\binom{20}{1}(0.05)^{1}(0.95)^{19} \approx 0.3585+0.3774=0.7359$
(b) $n=20 \geq 20$ and $p=0.05 \leq 0.05$? Yes.
(c) $p(0 ; 1)+p(1 ; 1)=\frac{1^{0} e^{-1}}{0!}+\frac{1^{1} e^{-1}}{1!} \approx 0.3679+0.3679=0.7358$
(d) $n p=1 \geq 5$? No. $[n(1-p)$ is even smaller, but we slready know we should not use this estimate.]
(e) Go ahead and do it anyway: don't forget the continuity correction! $P\left(Z \leq \frac{1.5-1}{\sqrt{0.95}}\right) \approx P(Z \leq$ $0.51) \approx 0.6950$
7. $z \approx 1.96$
8. The weight of coffee in an 8 -ounce can of Maria's Best Coffee has normal distribution with mean 8.00 ounces and standard deviation 0.25 ounces.
(a) $P(X<7.50) \approx 0.0228$
(b) $P(7.50<X<8.50) \approx 0.9544$
