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Definition of the variance and standard deviation

I The variance is denoted by Var(X ) or σ2
X

I For a discrete RV,
Var(X ) = σ2

X :=
∑

(x − µX )2 · p(x)
summing over all possible values of X

I For a continuous RV,
Var(X ) = σ2

X :=
∫

(x − µX )2 · f (x)dx
integrating over the whole real line

I In either case, the standard deviation is the square root of the
variance: it is denoted by σX

σX =
√
Var(X ) =

√
σ2
X
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Interpretation of the variance

I The mean (expected value) µX represents the “center” of the
probability distribution - really a center of mass

I Then x − µX is the distance the value x is away from the
center, except that this distance is negative if x is less than
the mean.

I x − µX is called the deviation from the mean.

I The variance is formed by squaring all the deviations for all
the possible values of X, and then finding the expected value
of the squared deviations.

I It is a kind of average distance away from the mean. It
measures the amount of “spread” of the possible values of the
RV: are they close to the mean in general, or more spread out?
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Example: computing the variance for a finite RV (the one
of Ex. 4.1)

I The random variable X = the number of TV sets with white
cords in the shipment
The possible values of X are 0, 1, 2
p(0) = 6

11 , p(1) = 9
22 , p(2) = 1

22
We previously computed µX = 1

2
We will now compute the three deviations from the mean and
square them:

I For x = 0 we get (0 − 1
2)2 = 1

4

I For x = 1 we get (1 − 1
2)2 = 1

4

I For x = 2 we get (2 − 1
2)2 = 9

4

I Now multiply each squared deviation by the probability for
that value of x and add them together:

I σ2(X ) = 1
4

(
6
11

)
+ 1

4

(
9
22

)
+ 9

4

(
1
22

)
I = 6

44 + 9
88 + 9

88 = 30
88 = 15

44
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Example: computing the expected value and variance for
the number that shows when we roll a balanced die

I X has possible values 1, 2, 3, 4, 5, 6;
each one has probability 1

6

I µX = 1· (1) + 2 · p(2) + 3 · p(3) + 4· (4) + 5 · p(5) + 6 · p(6)

I = 1
(
1
6

)
+ 2

(
1
6

)
+ 3

(
1
6

)
+ 4

(
1
6

)
+ 5

(
1
6

)
+ 6

(
1
6

)
I = (1 + 2 + 3 + 4 + 5 + 6)

(
1
6

)
I = 21

6

I = 7
2

I No accident, this is exactly halfway between 1 and 6, because
this RV is uniformly distributed.
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Example: computing the expected value and variance for
the number that shows when we roll a balanced die,
continued

I X has possible values 1, 2, 3, 4, 5, 6;
each one has probability 1

6

I µX = 7
2 , now to compute the variance:

I Var(X ) =
∑6

x=1

(
x − 7

2

)2 · p(x)

I =
(
1 − 7

2

)2 (1
6

)
+
(
2 − 7

2

)2 (1
6

)
+
(
3 − 7

2

)2 (1
6

)
+(

4 − 7
2

)2 (1
6

)
+
(
5 − 7

2

)2 (1
6

)
+
(
6 − 7

2

)2 (1
6

)
I =

(
−5

2

)2 (1
6

)
+
(
−3

2

)2 (1
6

)
+
(
−1

2

)2 (1
6

)
+
(
1
2

)2 (1
6

)
+(

3
2

)2 (1
6

)
+
(
5
2

)2 (1
6

)
I =

(
1
6

) (
25
4 + 9

4 + 1
4 + 1

4 + 9
4 + 25

4

)
I =

(
1
6

) (
70
4

)
I = 35

12
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Example: computing the expected value and variance for
the number that shows when we roll a balanced die,
continued

I X has possible values 1, 2, 3, 4, 5, 6;
each one has probability 1

6

I µX = 7
2 , now to compute the variance:
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A useful theorem about the variance

Theorem (The “computational formula” for the variance)

σ2
X = E

(
X 2
)
− µ2

X

This theorem provides an alternate way to compute the variance,
which is often much faster than using the definition.

Example

I For rolling a balanced die, but using this computational
formula

I E (X 2) =
∑6

x=1 x
2 · p(x)

I = 12
(
1
6

)
+ 22

(
1
6

)
+ 32

(
1
6

)
+ 42

(
1
6

)
+ 52

(
1
6

)
+ 62

(
1
6

)
I =

(
1
6

)
(1 + 4 + 9 + 16 + 25 + 36)

I = 91
6

I Then compute

σ2
X = E (X 2) − µ2 = 91

6 −
(
7
2

)2
= 91

6 − 49
4 = 182

12 − 147
12 = 35
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