The Variance and standard deviation of a random variable

Sybil Shaver

April 16, 2017

Definition of the variance and standard deviation

- The variance is denoted by $\operatorname{Var}(X)$ or σ_{X}^{2}

Definition of the variance and standard deviation

- The variance is denoted by $\operatorname{Var}(X)$ or σ_{X}^{2}
- For a discrete RV,
$\operatorname{Var}(X)=\sigma_{X}^{2}:=\sum\left(x-\mu_{X}\right)^{2} \cdot p(x)$
summing over all possible values of X

Definition of the variance and standard deviation

- The variance is denoted by $\operatorname{Var}(X)$ or σ_{X}^{2}
- For a discrete RV,
$\operatorname{Var}(X)=\sigma_{X}^{2}:=\sum\left(x-\mu_{X}\right)^{2} \cdot p(x)$
summing over all possible values of X
- For a continuous RV,
$\operatorname{Var}(X)=\sigma_{X}^{2}:=\int(x-\mu X)^{2} \cdot f(x) \mathrm{d} x$
integrating over the whole real line

Definition of the variance and standard deviation

- The variance is denoted by $\operatorname{Var}(X)$ or σ_{X}^{2}
- For a discrete RV,
$\operatorname{Var}(X)=\sigma_{X}^{2}:=\sum\left(x-\mu_{X}\right)^{2} \cdot p(x)$
summing over all possible values of X
- For a continuous RV,
$\operatorname{Var}(X)=\sigma_{X}^{2}:=\int(x-\mu X)^{2} \cdot f(x) \mathrm{d} x$
integrating over the whole real line
- In either case, the standard deviation is the square root of the variance: it is denoted by σ_{X}

$$
\sigma_{X}=\sqrt{\operatorname{Var}(X)}=\sqrt{\sigma_{X}^{2}}
$$

Interpretation of the variance

- The mean (expected value) μ_{X} represents the "center" of the probability distribution - really a center of mass

Interpretation of the variance

- The mean (expected value) μ_{X} represents the "center" of the probability distribution - really a center of mass
- Then $x-\mu_{X}$ is the distance the value x is away from the center, except that this distance is negative if x is less than the mean.

Interpretation of the variance

- The mean (expected value) μ_{X} represents the "center" of the probability distribution - really a center of mass
- Then $x-\mu_{X}$ is the distance the value x is away from the center, except that this distance is negative if x is less than the mean.
- $x-\mu_{X}$ is called the deviation from the mean.

Interpretation of the variance

- The mean (expected value) μ_{X} represents the "center" of the probability distribution - really a center of mass
- Then $x-\mu_{X}$ is the distance the value x is away from the center, except that this distance is negative if x is less than the mean.
- $x-\mu_{X}$ is called the deviation from the mean.
- The variance is formed by squaring all the deviations for all the possible values of X, and then finding the expected value of the squared deviations.

Interpretation of the variance

- The mean (expected value) μ_{X} represents the "center" of the probability distribution - really a center of mass
- Then $x-\mu_{X}$ is the distance the value x is away from the center, except that this distance is negative if x is less than the mean.
- $x-\mu_{X}$ is called the deviation from the mean.
- The variance is formed by squaring all the deviations for all the possible values of X, and then finding the expected value of the squared deviations.
- It is a kind of average distance away from the mean. It measures the amount of "spread" of the possible values of the RV : are they close to the mean in general, or more spread out?

Example: computing the variance for a finite RV (the one of Ex. 4.1)

- The random variable $X=$ the number of TV sets with white cords in the shipment
The possible values of X are $0,1,2$ $p(0)=\frac{6}{11}, p(1)=\frac{9}{22}, p(2)=\frac{1}{22}$
We previously computed $\mu_{X}=\frac{1}{2}$
We will now compute the three deviations from the mean and square them:

Example: computing the variance for a finite RV (the one of Ex. 4.1)

- The random variable $X=$ the number of TV sets with white cords in the shipment
The possible values of X are $0,1,2$ $p(0)=\frac{6}{11}, p(1)=\frac{9}{22}, p(2)=\frac{1}{22}$
We previously computed $\mu_{X}=\frac{1}{2}$
We will now compute the three deviations from the mean and square them:
- For $x=0$ we get $\left(0-\frac{1}{2}\right)^{2}=\frac{1}{4}$

Example: computing the variance for a finite RV (the one of Ex. 4.1)

- The random variable $X=$ the number of TV sets with white cords in the shipment
The possible values of X are $0,1,2$ $p(0)=\frac{6}{11}, p(1)=\frac{9}{22}, p(2)=\frac{1}{22}$
We previously computed $\mu_{X}=\frac{1}{2}$
We will now compute the three deviations from the mean and square them:
- For $x=0$ we get $\left(0-\frac{1}{2}\right)^{2}=\frac{1}{4}$
- For $x=1$ we get $\left(1-\frac{1}{2}\right)^{2}=\frac{1}{4}$

Example: computing the variance for a finite RV (the one of Ex. 4.1)

- The random variable $X=$ the number of TV sets with white cords in the shipment
The possible values of X are $0,1,2$ $p(0)=\frac{6}{11}, p(1)=\frac{9}{22}, p(2)=\frac{1}{22}$
We previously computed $\mu_{X}=\frac{1}{2}$
We will now compute the three deviations from the mean and square them:
- For $x=0$ we get $\left(0-\frac{1}{2}\right)^{2}=\frac{1}{4}$
- For $x=1$ we get $\left(1-\frac{1}{2}\right)^{2}=\frac{1}{4}$
- For $x=2$ we get $\left(2-\frac{1}{2}\right)^{2}=\frac{9}{4}$

Example: computing the variance for a finite RV (the one of Ex. 4.1)

- The random variable $X=$ the number of TV sets with white cords in the shipment
The possible values of X are $0,1,2$
$p(0)=\frac{6}{11}, p(1)=\frac{9}{22}, p(2)=\frac{1}{22}$
We previously computed $\mu_{X}=\frac{1}{2}$
We will now compute the three deviations from the mean and square them:
- For $x=0$ we get $\left(0-\frac{1}{2}\right)^{2}=\frac{1}{4}$
- For $x=1$ we get $\left(1-\frac{1}{2}\right)^{2}=\frac{1}{4}$
- For $x=2$ we get $\left(2-\frac{1}{2}\right)^{2}=\frac{9}{4}$
- Now multiply each squared deviation by the probability for that value of x and add them together:

Example: computing the variance for a finite RV (the one of Ex. 4.1)

- The random variable $X=$ the number of TV sets with white cords in the shipment
The possible values of X are $0,1,2$
$p(0)=\frac{6}{11}, p(1)=\frac{9}{22}, p(2)=\frac{1}{22}$
We previously computed $\mu_{X}=\frac{1}{2}$
We will now compute the three deviations from the mean and square them:
- For $x=0$ we get $\left(0-\frac{1}{2}\right)^{2}=\frac{1}{4}$
- For $x=1$ we get $\left(1-\frac{1}{2}\right)^{2}=\frac{1}{4}$
- For $x=2$ we get $\left(2-\frac{1}{2}\right)^{2}=\frac{9}{4}$
- Now multiply each squared deviation by the probability for that value of x and add them together:
- $\sigma^{2}(X)=\frac{1}{4}\left(\frac{6}{11}\right)+\frac{1}{4}\left(\frac{9}{22}\right)+\frac{9}{4}\left(\frac{1}{22}\right)$

Example: computing the variance for a finite RV (the one of Ex. 4.1)

- The random variable $X=$ the number of TV sets with white cords in the shipment
The possible values of X are $0,1,2$
$p(0)=\frac{6}{11}, p(1)=\frac{9}{22}, p(2)=\frac{1}{22}$
We previously computed $\mu_{X}=\frac{1}{2}$
We will now compute the three deviations from the mean and square them:
- For $x=0$ we get $\left(0-\frac{1}{2}\right)^{2}=\frac{1}{4}$
- For $x=1$ we get $\left(1-\frac{1}{2}\right)^{2}=\frac{1}{4}$
- For $x=2$ we get $\left(2-\frac{1}{2}\right)^{2}=\frac{9}{4}$
- Now multiply each squared deviation by the probability for that value of x and add them together:
- $\sigma^{2}(X)=\frac{1}{4}\left(\frac{6}{11}\right)+\frac{1}{4}\left(\frac{9}{22}\right)+\frac{9}{4}\left(\frac{1}{22}\right)$
- $=\frac{6}{44}+\frac{9}{88}+\frac{9}{88}=\frac{30}{88}=\frac{15}{44}$

Example: computing the expected value and variance for the number that shows when we roll a balanced die

- X has possible values $1,2,3,4,5,6$; each one has probability $\frac{1}{6}$

Example: computing the expected value and variance for the number that shows when we roll a balanced die

- X has possible values $1,2,3,4,5,6$; each one has probability $\frac{1}{6}$
- $\mu_{X}=1 \cdot(1)+2 \cdot p(2)+3 \cdot p(3)+4 \cdot(4)+5 \cdot p(5)+6 \cdot p(6)$

Example: computing the expected value and variance for the number that shows when we roll a balanced die

- X has possible values $1,2,3,4,5,6$; each one has probability $\frac{1}{6}$
- $\mu_{X}=1 \cdot(1)+2 \cdot p(2)+3 \cdot p(3)+4 \cdot(4)+5 \cdot p(5)+6 \cdot p(6)$
- $=1\left(\frac{1}{6}\right)+2\left(\frac{1}{6}\right)+3\left(\frac{1}{6}\right)+4\left(\frac{1}{6}\right)+5\left(\frac{1}{6}\right)+6\left(\frac{1}{6}\right)$

Example: computing the expected value and variance for the number that shows when we roll a balanced die

- X has possible values $1,2,3,4,5,6$; each one has probability $\frac{1}{6}$
- $\mu_{X}=1 \cdot(1)+2 \cdot p(2)+3 \cdot p(3)+4 \cdot(4)+5 \cdot p(5)+6 \cdot p(6)$
- $=1\left(\frac{1}{6}\right)+2\left(\frac{1}{6}\right)+3\left(\frac{1}{6}\right)+4\left(\frac{1}{6}\right)+5\left(\frac{1}{6}\right)+6\left(\frac{1}{6}\right)$
- $=(1+2+3+4+5+6)\left(\frac{1}{6}\right)$

Example: computing the expected value and variance for the number that shows when we roll a balanced die

- X has possible values $1,2,3,4,5,6$; each one has probability $\frac{1}{6}$
- $\mu_{X}=1 \cdot(1)+2 \cdot p(2)+3 \cdot p(3)+4 \cdot(4)+5 \cdot p(5)+6 \cdot p(6)$
- $=1\left(\frac{1}{6}\right)+2\left(\frac{1}{6}\right)+3\left(\frac{1}{6}\right)+4\left(\frac{1}{6}\right)+5\left(\frac{1}{6}\right)+6\left(\frac{1}{6}\right)$
- $=(1+2+3+4+5+6)\left(\frac{1}{6}\right)$
- $=\frac{21}{6}$

Example: computing the expected value and variance for the number that shows when we roll a balanced die

- X has possible values $1,2,3,4,5,6$; each one has probability $\frac{1}{6}$
- $\mu_{X}=1 \cdot(1)+2 \cdot p(2)+3 \cdot p(3)+4 \cdot(4)+5 \cdot p(5)+6 \cdot p(6)$
- $=1\left(\frac{1}{6}\right)+2\left(\frac{1}{6}\right)+3\left(\frac{1}{6}\right)+4\left(\frac{1}{6}\right)+5\left(\frac{1}{6}\right)+6\left(\frac{1}{6}\right)$
- $=(1+2+3+4+5+6)\left(\frac{1}{6}\right)$
- $=\frac{21}{6}$
- $=\frac{7}{2}$

Example: computing the expected value and variance for the number that shows when we roll a balanced die

- X has possible values $1,2,3,4,5,6$; each one has probability $\frac{1}{6}$
- $\mu_{X}=1 \cdot(1)+2 \cdot p(2)+3 \cdot p(3)+4 \cdot(4)+5 \cdot p(5)+6 \cdot p(6)$
- $=1\left(\frac{1}{6}\right)+2\left(\frac{1}{6}\right)+3\left(\frac{1}{6}\right)+4\left(\frac{1}{6}\right)+5\left(\frac{1}{6}\right)+6\left(\frac{1}{6}\right)$
- $=(1+2+3+4+5+6)\left(\frac{1}{6}\right)$
- $=\frac{21}{6}$
- $=\frac{7}{2}$
- No accident, this is exactly halfway between 1 and 6, because this RV is uniformly distributed.

Example: computing the expected value and variance for the number that shows when we roll a balanced die, continued

- X has possible values $1,2,3,4,5,6$; each one has probability $\frac{1}{6}$

Example: computing the expected value and variance for the number that shows when we roll a balanced die, continued

- X has possible values $1,2,3,4,5,6$; each one has probability $\frac{1}{6}$
- $\mu_{X}=\frac{7}{2}$, now to compute the variance:

Example: computing the expected value and variance for the number that shows when we roll a balanced die, continued

- X has possible values $1,2,3,4,5,6$; each one has probability $\frac{1}{6}$
- $\mu_{X}=\frac{7}{2}$, now to compute the variance:
- $\operatorname{Var}(X)=\sum_{x=1}^{6}\left(x-\frac{7}{2}\right)^{2} \cdot p(x)$

Example: computing the expected value and variance for the number that shows when we roll a balanced die, continued

- X has possible values $1,2,3,4,5,6$; each one has probability $\frac{1}{6}$
- $\mu_{X}=\frac{7}{2}$, now to compute the variance:
- $\operatorname{Var}(X)=\sum_{x=1}^{6}\left(x-\frac{7}{2}\right)^{2} \cdot p(x)$

$$
\begin{aligned}
v= & \left(1-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(2-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(3-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+ \\
& \left(4-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(5-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(6-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)
\end{aligned}
$$

Example: computing the expected value and variance for the number that shows when we roll a balanced die, continued

- X has possible values $1,2,3,4,5,6$; each one has probability $\frac{1}{6}$
- $\mu_{X}=\frac{7}{2}$, now to compute the variance:
- $\operatorname{Var}(X)=\sum_{x=1}^{6}\left(x-\frac{7}{2}\right)^{2} \cdot p(x)$
- $=\left(1-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(2-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(3-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+$
$\left(4-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(5-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(6-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)$
- $=\left(-\frac{5}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(-\frac{3}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(-\frac{1}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(\frac{1}{2}\right)^{2}\left(\frac{1}{6}\right)+$
$\left(\frac{3}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(\frac{5}{2}\right)^{2}\left(\frac{1}{6}\right)$

Example: computing the expected value and variance for the number that shows when we roll a balanced die, continued

- X has possible values $1,2,3,4,5,6$; each one has probability $\frac{1}{6}$
- $\mu_{X}=\frac{7}{2}$, now to compute the variance:
- $\operatorname{Var}(X)=\sum_{x=1}^{6}\left(x-\frac{7}{2}\right)^{2} \cdot p(x)$
- $=\left(1-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(2-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(3-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+$
$\left(4-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(5-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(6-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)$
- $=\left(-\frac{5}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(-\frac{3}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(-\frac{1}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(\frac{1}{2}\right)^{2}\left(\frac{1}{6}\right)+$
$\left(\frac{3}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(\frac{5}{2}\right)^{2}\left(\frac{1}{6}\right)$
- $=\left(\frac{1}{6}\right)\left(\frac{25}{4}+\frac{9}{4}+\frac{1}{4}+\frac{1}{4}+\frac{9}{4}+\frac{25}{4}\right)$

Example: computing the expected value and variance for the number that shows when we roll a balanced die, continued

- X has possible values $1,2,3,4,5,6$; each one has probability $\frac{1}{6}$
- $\mu_{X}=\frac{7}{2}$, now to compute the variance:
- $\operatorname{Var}(X)=\sum_{x=1}^{6}\left(x-\frac{7}{2}\right)^{2} \cdot p(x)$
- $=\left(1-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(2-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(3-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+$
$\left(4-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(5-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(6-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)$
- $=\left(-\frac{5}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(-\frac{3}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(-\frac{1}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(\frac{1}{2}\right)^{2}\left(\frac{1}{6}\right)+$
$\left(\frac{3}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(\frac{5}{2}\right)^{2}\left(\frac{1}{6}\right)$
- $=\left(\frac{1}{6}\right)\left(\frac{25}{4}+\frac{9}{4}+\frac{1}{4}+\frac{1}{4}+\frac{9}{4}+\frac{25}{4}\right)$
- $=\left(\frac{1}{6}\right)\left(\frac{70}{4}\right)$

Example: computing the expected value and variance for the number that shows when we roll a balanced die, continued

- X has possible values $1,2,3,4,5,6$; each one has probability $\frac{1}{6}$
- $\mu_{X}=\frac{7}{2}$, now to compute the variance:
- $\operatorname{Var}(X)=\sum_{x=1}^{6}\left(x-\frac{7}{2}\right)^{2} \cdot p(x)$
- $=\left(1-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(2-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(3-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+$
$\left(4-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(5-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(6-\frac{7}{2}\right)^{2}\left(\frac{1}{6}\right)$
- $=\left(-\frac{5}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(-\frac{3}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(-\frac{1}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(\frac{1}{2}\right)^{2}\left(\frac{1}{6}\right)+$
$\left(\frac{3}{2}\right)^{2}\left(\frac{1}{6}\right)+\left(\frac{5}{2}\right)^{2}\left(\frac{1}{6}\right)$
- $=\left(\frac{1}{6}\right)\left(\frac{25}{4}+\frac{9}{4}+\frac{1}{4}+\frac{1}{4}+\frac{9}{4}+\frac{25}{4}\right)$
- $=\left(\frac{1}{6}\right)\left(\frac{70}{4}\right)$
- $=\frac{35}{12}$

A useful theorem about the variance

Theorem (The "computational formula" for the variance) $\sigma_{X}^{2}=E\left(X^{2}\right)-\mu_{X}^{2}$
This theorem provides an alternate way to compute the variance, which is often much faster than using the definition.

Example

- For rolling a balanced die, but using this computational formula

A useful theorem about the variance

> Theorem (The "computational formula" for the variance) $\sigma_{X}^{2}=E\left(X^{2}\right)-\mu_{X}^{2}$

This theorem provides an alternate way to compute the variance, which is often much faster than using the definition.

Example

- For rolling a balanced die, but using this computational formula
- $E\left(X^{2}\right)=\sum_{x=1}^{6} x^{2} \cdot p(x)$

A useful theorem about the variance

Theorem (The "computational formula" for the variance) $\sigma_{X}^{2}=E\left(X^{2}\right)-\mu_{X}^{2}$
This theorem provides an alternate way to compute the variance, which is often much faster than using the definition.

Example

- For rolling a balanced die, but using this computational formula
- $E\left(X^{2}\right)=\sum_{x=1}^{6} x^{2} \cdot p(x)$
- $=1^{2}\left(\frac{1}{6}\right)+2^{2}\left(\frac{1}{6}\right)+3^{2}\left(\frac{1}{6}\right)+4^{2}\left(\frac{1}{6}\right)+5^{2}\left(\frac{1}{6}\right)+6^{2}\left(\frac{1}{6}\right)$

A useful theorem about the variance

Theorem (The "computational formula" for the variance) $\sigma_{X}^{2}=E\left(X^{2}\right)-\mu_{X}^{2}$
This theorem provides an alternate way to compute the variance, which is often much faster than using the definition.

Example

- For rolling a balanced die, but using this computational formula
- $E\left(X^{2}\right)=\sum_{x=1}^{6} x^{2} \cdot p(x)$
- $=1^{2}\left(\frac{1}{6}\right)+2^{2}\left(\frac{1}{6}\right)+3^{2}\left(\frac{1}{6}\right)+4^{2}\left(\frac{1}{6}\right)+5^{2}\left(\frac{1}{6}\right)+6^{2}\left(\frac{1}{6}\right)$
- $=\left(\frac{1}{6}\right)(1+4+9+16+25+36)$

A useful theorem about the variance

Theorem (The "computational formula" for the variance) $\sigma_{X}^{2}=E\left(X^{2}\right)-\mu_{X}^{2}$
This theorem provides an alternate way to compute the variance, which is often much faster than using the definition.

Example

- For rolling a balanced die, but using this computational formula
- $E\left(X^{2}\right)=\sum_{x=1}^{6} x^{2} \cdot p(x)$
- $=1^{2}\left(\frac{1}{6}\right)+2^{2}\left(\frac{1}{6}\right)+3^{2}\left(\frac{1}{6}\right)+4^{2}\left(\frac{1}{6}\right)+5^{2}\left(\frac{1}{6}\right)+6^{2}\left(\frac{1}{6}\right)$
- $=\left(\frac{1}{6}\right)(1+4+9+16+25+36)$
- $=\frac{91}{6}$

A useful theorem about the variance

Theorem (The "computational formula" for the variance) $\sigma_{X}^{2}=E\left(X^{2}\right)-\mu_{X}^{2}$
This theorem provides an alternate way to compute the variance, which is often much faster than using the definition.

Example

- For rolling a balanced die, but using this computational formula
- $E\left(X^{2}\right)=\sum_{x=1}^{6} x^{2} \cdot p(x)$
- $=1^{2}\left(\frac{1}{6}\right)+2^{2}\left(\frac{1}{6}\right)+3^{2}\left(\frac{1}{6}\right)+4^{2}\left(\frac{1}{6}\right)+5^{2}\left(\frac{1}{6}\right)+6^{2}\left(\frac{1}{6}\right)$
- $=\left(\frac{1}{6}\right)(1+4+9+16+25+36)$
- $=\frac{91}{6}$
- Then compute

$$
\sigma_{X}^{2}=E\left(X^{2}\right)-\mu^{2}=\frac{91}{6}-\left(\frac{7}{2}\right)^{2}=\frac{91}{6}-\frac{49}{4}=\frac{182}{12}-\frac{147}{12}=\frac{35}{12}
$$

