The Expected Value of a random variable

Sybil Shaver

April 6, 2017

Definition of the expected value

- The expected value is also called the mean; the notation for this is $E(X)$ or μ_{X}

Definition of the expected value

- The expected value is also called the mean; the notation for this is $E(X)$ or μ_{X}
- For a discrete RV, $E(X)=\mu_{X}:=\sum x \cdot p(x)$ summing over all possible values of X Here I am using the shorthand $p(x)$ to stand for $p(X=x)$

Definition of the expected value

- The expected value is also called the mean; the notation for this is $E(X)$ or μ_{X}
- For a discrete RV, $E(X)=\mu_{X}:=\sum x \cdot p(x)$ summing over all possible values of X Here I am using the shorthand $p(x)$ to stand for $p(X=x)$
- For a continuous RV,
$E(X)=\mu_{X}:=\int x \cdot f(x) \mathrm{d} x$
integrating over the whole real line

Example: computing the expected value for a finite RV

 (Ex. 4.1)- A lot of 12 television sets includes 2 with white cords. If 3 of the sets are chosen at random for shipment to a hotel, how many sets with white cords can the shipper expect to send to the hotel?
- Examples from Miller, Irwin. John E. Freund's Mathematical Statistics with Applications, 8th Edition. Pearson, 20151203. VitalBook file.

Example: computing the expected value for a finite RV

 (Ex. 4.1)- A lot of 12 television sets includes 2 with white cords. If 3 of the sets are chosen at random for shipment to a hotel, how many sets with white cords can the shipper expect to send to the hotel?
- The random variable $X=$ the number of TV sets with white cords in the shipment

Example: computing the expected value for a finite RV

 (Ex. 4.1)- A lot of 12 television sets includes 2 with white cords. If 3 of the sets are chosen at random for shipment to a hotel, how many sets with white cords can the shipper expect to send to the hotel?
- The random variable $X=$ the number of TV sets with white cords in the shipment
- The possible values of X are $0,1,2$

Example: computing the expected value for a finite RV

 (Ex. 4.1)- A lot of 12 television sets includes 2 with white cords. If 3 of the sets are chosen at random for shipment to a hotel, how many sets with white cords can the shipper expect to send to the hotel?
- The random variable $X=$ the number of TV sets with white cords in the shipment
- The possible values of X are $0,1,2$
- $p(X=0)=p(0)=\frac{\binom{10}{3}}{\binom{12}{3}}=\frac{120}{220}=\frac{6}{11}$

Example: computing the expected value for a finite RV

 (Ex. 4.1)- A lot of 12 television sets includes 2 with white cords. If 3 of the sets are chosen at random for shipment to a hotel, how many sets with white cords can the shipper expect to send to the hotel?
- The random variable $X=$ the number of TV sets with white cords in the shipment
- The possible values of X are $0,1,2$
- $p(X=0)=p(0)=\frac{\binom{10}{3}}{\binom{12}{3}}=\frac{120}{220}=\frac{6}{11}$
- $p(X=1)=p(1)=\frac{\binom{2}{1}\binom{10}{2}}{\binom{12}{3}}=\frac{90}{220}=\frac{9}{22}$

Example: computing the expected value for a finite RV

 (Ex. 4.1)- A lot of 12 television sets includes 2 with white cords. If 3 of the sets are chosen at random for shipment to a hotel, how many sets with white cords can the shipper expect to send to the hotel?
- The random variable $X=$ the number of TV sets with white cords in the shipment
- The possible values of X are $0,1,2$
- $p(X=0)=p(0)=\frac{\binom{10}{3}}{\binom{12}{3}}=\frac{120}{220}=\frac{6}{11}$
- $p(X=1)=p(1)=\frac{\binom{2}{1}\binom{10}{2}}{\binom{12}{3}}=\frac{90}{220}=\frac{9}{22}$
- $p(X=2)=p(2)=\frac{\binom{2}{2}\binom{10}{1}}{\binom{12}{3}}=\frac{10}{220}=\frac{1}{22}$

Example: computing the expected value for a finite RV (Ex. 4.1, continued)

- So we have X with possible values $0,1,2$,

$$
p(0)=\frac{6}{11}, p(1)=\frac{9}{22}, p(2)=\frac{1}{22}
$$

Example: computing the expected value for a finite RV (Ex. 4.1, continued)

- So we have X with possible values $0,1,2$, $p(0)=\frac{6}{11}, p(1)=\frac{9}{22}, p(2)=\frac{1}{22}$
- The expected value is the sum of each possible value times its probability

Example: computing the expected value for a finite RV

 (Ex. 4.1, continued)- So we have X with possible values $0,1,2$, $p(0)=\frac{6}{11}, p(1)=\frac{9}{22}, p(2)=\frac{1}{22}$
- The expected value is the sum of each possible value times its probability
- $E(X)=0 \cdot p(0)+1 \cdot p(1)+2 \cdot p(2)$

Example: computing the expected value for a finite RV (Ex. 4.1, continued)

- So we have X with possible values $0,1,2$, $p(0)=\frac{6}{11}, p(1)=\frac{9}{22}, p(2)=\frac{1}{22}$
- The expected value is the sum of each possible value times its probability
- $E(X)=0 \cdot p(0)+1 \cdot p(1)+2 \cdot p(2)$
- $=0\left(\frac{6}{11}\right)+1\left(\frac{9}{22}\right)+2\left(\frac{1}{22}\right)$

Example: computing the expected value for a finite RV (Ex. 4.1, continued)

- So we have X with possible values $0,1,2$,

$$
p(0)=\frac{6}{11}, p(1)=\frac{9}{22}, p(2)=\frac{1}{22}
$$

- The expected value is the sum of each possible value times its probability
- $E(X)=0 \cdot p(0)+1 \cdot p(1)+2 \cdot p(2)$
- $=0\left(\frac{6}{11}\right)+1\left(\frac{9}{22}\right)+2\left(\frac{1}{22}\right)$
- $=0+\frac{9}{22}+\frac{2}{22}$

Example: computing the expected value for a finite RV (Ex. 4.1, continued)

- So we have X with possible values $0,1,2$, $p(0)=\frac{6}{11}, p(1)=\frac{9}{22}, p(2)=\frac{1}{22}$
- The expected value is the sum of each possible value times its probability
- $E(X)=0 \cdot p(0)+1 \cdot p(1)+2 \cdot p(2)$
- $=0\left(\frac{6}{11}\right)+1\left(\frac{9}{22}\right)+2\left(\frac{1}{22}\right)$
- $=0+\frac{9}{22}+\frac{2}{22}$
- $=\frac{11}{22}$

Example: computing the expected value for a finite RV (Ex. 4.1, continued)

- So we have X with possible values $0,1,2$,

$$
p(0)=\frac{6}{11}, p(1)=\frac{9}{22}, p(2)=\frac{1}{22}
$$

- The expected value is the sum of each possible value times its probability
- $E(X)=0 \cdot p(0)+1 \cdot p(1)+2 \cdot p(2)$
- $=0\left(\frac{6}{11}\right)+1\left(\frac{9}{22}\right)+2\left(\frac{1}{22}\right)$
- $=0+\frac{9}{22}+\frac{2}{22}$
- $=\frac{11}{22}$
- $=\frac{1}{2}$

Example: computing the expected value for a continuous

 RV (Ex. 4.2)- Certain coded measurements of the pitch diameter of threads of a fitting have the probability density

$$
f(x)=\frac{4}{\pi\left(1+x^{2}\right)} \text { for } 0<x<1
$$

We will verify that this is a probability density (not done in the textbook) and then compute the expected value of the pitch diameter.

Example: computing the expected value for a continuous

 RV (Ex. 4.2)- Certain coded measurements of the pitch diameter of threads of a fitting have the probability density

$$
f(x)=\frac{4}{\pi\left(1+x^{2}\right)} \text { for } 0<x<1
$$

We will verify that this is a probability density (not done in the textbook) and then compute the expected value of the pitch diameter.

- Does this define a probability density? Is $f(x) \geq 0$ everywhere and is $\int_{-\infty}^{\infty} f(x) \mathrm{d} x=1$?

Example: computing the expected value for a continuous

 RV (Ex. 4.2)- Certain coded measurements of the pitch diameter of threads of a fitting have the probability density

$$
f(x)=\frac{4}{\pi\left(1+x^{2}\right)} \text { for } 0<x<1
$$

We will verify that this is a probability density (not done in the textbook) and then compute the expected value of the pitch diameter.

- Does this define a probability density? Is $f(x) \geq 0$ everywhere and is $\int_{-\infty}^{\infty} f(x) \mathrm{d} x=1$?
- $\frac{4}{\pi\left(1+x^{2}\right)}>0$ for $0<x<1$ (in fact for all real numbers x)

Example: computing the expected value for a continuous

 RV (Ex. 4.2)- Certain coded measurements of the pitch diameter of threads of a fitting have the probability density

$$
f(x)=\frac{4}{\pi\left(1+x^{2}\right)} \text { for } 0<x<1
$$

We will verify that this is a probability density (not done in the textbook) and then compute the expected value of the pitch diameter.

- Does this define a probability density? Is $f(x) \geq 0$ everywhere and is $\int_{-\infty}^{\infty} f(x) \mathrm{d} x=1$?
- $\frac{4}{\pi\left(1+x^{2}\right)}>0$ for $0<x<1$ (in fact for all real numbers x)
- $\int_{-\infty}^{\infty} f(x) \mathrm{d} x=\int_{0}^{1} \frac{4}{\pi\left(1+x^{2}\right)} \mathrm{d} x=\frac{4}{\pi} \int_{0}^{1} \frac{1}{1+x^{2}} \mathrm{~d} x$

Example: computing the expected value for a continuous

 RV (Ex. 4.2)- Certain coded measurements of the pitch diameter of threads of a fitting have the probability density

$$
f(x)=\frac{4}{\pi\left(1+x^{2}\right)} \text { for } 0<x<1
$$

We will verify that this is a probability density (not done in the textbook) and then compute the expected value of the pitch diameter.

- Does this define a probability density? Is $f(x) \geq 0$ everywhere and is $\int_{-\infty}^{\infty} f(x) \mathrm{d} x=1$?
- $\frac{4}{\pi\left(1+x^{2}\right)}>0$ for $0<x<1$ (in fact for all real numbers x)
- $\int_{-\infty}^{\infty} f(x) \mathrm{d} x=\int_{0}^{1} \frac{4}{\pi\left(1+x^{2}\right)} \mathrm{d} x=\frac{4}{\pi} \int_{0}^{1} \frac{1}{1+x^{2}} \mathrm{~d} x$
- $=\frac{4}{\pi}\left[\tan ^{-1}(x)\right]_{0}^{1}$

Example: computing the expected value for a continuous

 RV (Ex. 4.2)- Certain coded measurements of the pitch diameter of threads of a fitting have the probability density

$$
f(x)=\frac{4}{\pi\left(1+x^{2}\right)} \text { for } 0<x<1
$$

We will verify that this is a probability density (not done in the textbook) and then compute the expected value of the pitch diameter.

- Does this define a probability density? Is $f(x) \geq 0$ everywhere and is $\int_{-\infty}^{\infty} f(x) \mathrm{d} x=1$?
- $\frac{4}{\pi\left(1+x^{2}\right)}>0$ for $0<x<1$ (in fact for all real numbers x)
- $\int_{-\infty}^{\infty} f(x) \mathrm{d} x=\int_{0}^{1} \frac{4}{\pi\left(1+x^{2}\right)} \mathrm{d} x=\frac{4}{\pi} \int_{0}^{1} \frac{1}{1+x^{2}} \mathrm{~d} x$
- $=\frac{4}{\pi}\left[\tan ^{-1}(x)\right]_{0}^{1}$
- $=\frac{4}{\pi}\left[\tan ^{-1}(1)-\tan ^{-1}(0)\right]$

Example: computing the expected value for a continuous

 RV (Ex. 4.2)- Certain coded measurements of the pitch diameter of threads of a fitting have the probability density

$$
f(x)=\frac{4}{\pi\left(1+x^{2}\right)} \text { for } 0<x<1
$$

We will verify that this is a probability density (not done in the textbook) and then compute the expected value of the pitch diameter.

- Does this define a probability density? Is $f(x) \geq 0$ everywhere and is $\int_{-\infty}^{\infty} f(x) \mathrm{d} x=1$?
- $\frac{4}{\pi\left(1+x^{2}\right)}>0$ for $0<x<1$ (in fact for all real numbers x)
- $\int_{-\infty}^{\infty} f(x) \mathrm{d} x=\int_{0}^{1} \frac{4}{\pi\left(1+x^{2}\right)} \mathrm{d} x=\frac{4}{\pi} \int_{0}^{1} \frac{1}{1+x^{2}} \mathrm{~d} x$
- $=\frac{4}{\pi}\left[\tan ^{-1}(x)\right]_{0}^{1}$
- $=\frac{4}{\pi}\left[\tan ^{-1}(1)-\tan ^{-1}(0)\right]$
$-=\frac{4}{\pi}\left[\frac{\pi}{4}-0\right]=1$

Example: computing the expected value for a continuous RV (Ex. 4.2, continued)

$$
f(x)=\frac{4}{\pi\left(1+x^{2}\right)} \text { for } 0<x<1
$$

Compute the expected value of the pitch diameter.

Example: computing the expected value for a continuous RV (Ex. 4.2, continued)

$$
f(x)=\frac{4}{\pi\left(1+x^{2}\right)} \text { for } 0<x<1
$$

Compute the expected value of the pitch diameter.

- The expected value is $\int_{-\infty}^{\infty} x \cdot f(x) \mathrm{d} x$

Example: computing the expected value for a continuous RV (Ex. 4.2, continued)

$$
f(x)=\frac{4}{\pi\left(1+x^{2}\right)} \text { for } 0<x<1
$$

Compute the expected value of the pitch diameter.

- The expected value is $\int_{-\infty}^{\infty} x \cdot f(x) \mathrm{d} x$
- $E(X)=\int_{0}^{1} x \cdot \frac{4}{\pi\left(1+x^{2}\right)} \mathrm{d} x$

Example: computing the expected value for a continuous RV (Ex. 4.2, continued)
-

$$
f(x)=\frac{4}{\pi\left(1+x^{2}\right)} \text { for } 0<x<1
$$

Compute the expected value of the pitch diameter.

- The expected value is $\int_{-\infty}^{\infty} x \cdot f(x) \mathrm{d} x$
- $E(X)=\int_{0}^{1} x \cdot \frac{4}{\pi\left(1+x^{2}\right)} \mathrm{d} x$
- $=\frac{4}{\pi} \int_{0}^{1} \frac{x}{1+x^{2}} \mathrm{~d} x$

Example: computing the expected value for a continuous RV (Ex. 4.2, continued)

$$
f(x)=\frac{4}{\pi\left(1+x^{2}\right)} \text { for } 0<x<1
$$

Compute the expected value of the pitch diameter.

- The expected value is $\int_{-\infty}^{\infty} x \cdot f(x) \mathrm{d} x$
- $E(X)=\int_{0}^{1} x \cdot \frac{4}{\pi\left(1+x^{2}\right)} \mathrm{d} x$
- $=\frac{4}{\pi} \int_{0}^{1} \frac{x}{1+x^{2}} \mathrm{~d} x$
- Do this by substitution using $u=1+x^{2}$, so $\mathrm{d} u=2 x \mathrm{~d} x$, $x \mathrm{~d} x=\frac{\mathrm{d} u}{2}$

Example: computing the expected value for a continuous RV (Ex. 4.2, continued)

$$
f(x)=\frac{4}{\pi\left(1+x^{2}\right)} \text { for } 0<x<1
$$

Compute the expected value of the pitch diameter.

- The expected value is $\int_{-\infty}^{\infty} x \cdot f(x) \mathrm{d} x$
- $E(X)=\int_{0}^{1} x \cdot \frac{4}{\pi\left(1+x^{2}\right)} \mathrm{d} x$
- $=\frac{4}{\pi} \int_{0}^{1} \frac{x}{1+x^{2}} \mathrm{~d} x$
- Do this by substitution using $u=1+x^{2}$, so $\mathrm{d} u=2 x \mathrm{~d} x$, $x \mathrm{~d} x=\frac{\mathrm{d} u}{2}$
- $\frac{4}{\pi} \int_{0}^{1} \frac{x}{1+x^{2}} \mathrm{~d} x=\frac{4}{2 \pi} \int_{x=0}^{x=1} \frac{1}{u} \mathrm{~d} u$

Example: computing the expected value for a continuous RV (Ex. 4.2, continued)

$$
f(x)=\frac{4}{\pi\left(1+x^{2}\right)} \text { for } 0<x<1
$$

Compute the expected value of the pitch diameter.

- The expected value is $\int_{-\infty}^{\infty} x \cdot f(x) \mathrm{d} x$
- $E(X)=\int_{0}^{1} x \cdot \frac{4}{\pi\left(1+x^{2}\right)} \mathrm{d} x$
- $=\frac{4}{\pi} \int_{0}^{1} \frac{x}{1+x^{2}} \mathrm{~d} x$
- Do this by substitution using $u=1+x^{2}$, so $\mathrm{d} u=2 x \mathrm{~d} x$, $x \mathrm{~d} x=\frac{\mathrm{d} u}{2}$
- $\frac{4}{\pi} \int_{0}^{1} \frac{x}{1+x^{2}} \mathrm{~d} x=\frac{4}{2 \pi} \int_{x=0}^{x=1} \frac{1}{u} \mathrm{~d} u$
- $=\frac{2}{\pi}[\ln (u)]_{x=0}^{x=1}=\frac{2}{\pi}\left[\ln \left(1+x^{2}\right)\right]_{x=0}^{x=1}$

Example: computing the expected value for a continuous RV (Ex. 4.2, continued)

$$
f(x)=\frac{4}{\pi\left(1+x^{2}\right)} \text { for } 0<x<1
$$

Compute the expected value of the pitch diameter.

- The expected value is $\int_{-\infty}^{\infty} x \cdot f(x) \mathrm{d} x$
- $E(X)=\int_{0}^{1} x \cdot \frac{4}{\pi\left(1+x^{2}\right)} \mathrm{d} x$
- $=\frac{4}{\pi} \int_{0}^{1} \frac{x}{1+x^{2}} \mathrm{~d} x$
- Do this by substitution using $u=1+x^{2}$, so $\mathrm{d} u=2 x \mathrm{~d} x$, $x \mathrm{~d} x=\frac{\mathrm{d} u}{2}$
- $\frac{4}{\pi} \int_{0}^{1} \frac{x}{1+x^{2}} \mathrm{~d} x=\frac{4}{2 \pi} \int_{x=0}^{x=1} \frac{1}{u} \mathrm{~d} u$
- $=\frac{2}{\pi}[\ln (u)]_{x=0}^{x=1}=\frac{2}{\pi}\left[\ln \left(1+x^{2}\right)\right]_{x=0}^{x=1}$
- $=\frac{2}{\pi}[\ln (2)-\ln (1)]=\frac{2}{\pi}(\ln (2))=\frac{\ln 4}{\pi} \approx 0.44$

