1a) $2^{7}=128$
1b) $\binom{7}{3}=35$
2) a) $\frac{4 \cdot 48}{(52)(51))} \approx 0.018$
b) $\frac{\binom{13}{2}}{\binom{52}{2}} \approx 0.059$
c) $\frac{51}{(52)(51)} \approx 0.019$
3) Consider the experiment: toss a balanced coin four times.
a) $0,1,2,3,4$
b) $p(0)=\frac{1}{16}, p(1)=\frac{4}{16}=\frac{1}{4}, p(2)=\frac{6}{16}=\frac{3}{8}, p(3)=\frac{4}{16}=\frac{1}{4}, p(4)=\frac{1}{16}$
c) $P(1 \leq X \leq 3)=p(1)+p(2)+p(3)=\frac{4}{16}+\frac{6}{16}+\frac{4}{16}=\frac{14}{16}=\frac{7}{8}$
d) $E(X)=0\left(\frac{1}{16}\right)+1\left(\frac{4}{16}\right)+2\left(\frac{6}{16}\right)+3\left(\frac{4}{16}\right)+4\left(\frac{1}{16}\right)=2$. Interpretation: if we repeatedly toss these four coins many times, the average number of heads which show should be (very close to) 2 .
4) a) $\frac{x}{8} \geq 0$ for $x \geq 0$, and the total probability is $1: \int_{0}^{4} \frac{x}{8} d x=\left[\frac{x^{2}}{16}\right]_{0}^{4}=1-0=1$
b) $\int_{1}^{3} \frac{x}{8} d x=\left[\frac{x^{2}}{16}\right]_{1}^{3}=\frac{9}{16}-\frac{1}{16}=\frac{1}{2}$
c) $P(X=2)=0$ since this is a continuous probability density.

