Counting Methods

Sybil Shaver

February 26, 2018

The Multiplication Rule for Counting

If the following are true:

- We are counting outcomes to an experiment or process, where

The Multiplication Rule for Counting

If the following are true:

- We are counting outcomes to an experiment or process, where
- an outcome can be thought of as being made in a sequence of steps

The Multiplication Rule for Counting

If the following are true:

- We are counting outcomes to an experiment or process, where
- an outcome can be thought of as being made in a sequence of steps
- and the number of choices at each step is the same no matter what choice was made at any previous step:

The Multiplication Rule for Counting

If the following are true:

- We are counting outcomes to an experiment or process, where
- an outcome can be thought of as being made in a sequence of steps
- and the number of choices at each step is the same no matter what choice was made at any previous step:
- then the total number of outcomes is the product of the number of choices at each step.

Counting Permutations

If the following are true:

- We are counting outcomes to an experiment or process, where

Counting Permutations

If the following are true:

- We are counting outcomes to an experiment or process, where
- we are selecting k items from a fixed set of n items

Counting Permutations

If the following are true:

- We are counting outcomes to an experiment or process, where
- we are selecting k items from a fixed set of n items
- we are selecting without replacement (each item can only be selected once)

Counting Permutations

If the following are true:

- We are counting outcomes to an experiment or process, where
- we are selecting k items from a fixed set of n items
- we are selecting without replacement (each item can only be selected once)
- and the ordering of the selected items matters: rearranging them gives a different outcome

Counting Permutations

If the following are true:

- We are counting outcomes to an experiment or process, where
- we are selecting k items from a fixed set of n items
- we are selecting without replacement (each item can only be selected once)
- and the ordering of the selected items matters: rearranging them gives a different outcome
- then we are counting permutations.

Counting Permutations

If the following are true:

- We are counting outcomes to an experiment or process, where
- we are selecting k items from a fixed set of n items
- we are selecting without replacement (each item can only be selected once)
- and the ordering of the selected items matters: rearranging them gives a different outcome
- then we are counting permutations.
- The number of permutations of k items chosen from a set of n items is ${ }_{n} P_{k}=n(n-1) \cdots(n-k+1)=\frac{n!}{(n-k)!}$

Counting Combinations

If the following are true:

- We are counting outcomes to an experiment or process, where

Counting Combinations

If the following are true:

- We are counting outcomes to an experiment or process, where
- we are selecting k items from a fixed set of n items

Counting Combinations

If the following are true:

- We are counting outcomes to an experiment or process, where
- we are selecting k items from a fixed set of n items
- we are selecting without replacement (each item can only be selected once)

Counting Combinations

If the following are true:

- We are counting outcomes to an experiment or process, where
- we are selecting k items from a fixed set of n items
- we are selecting without replacement (each item can only be selected once)
- and the ordering of the selected items does not matter: rearranging does not give a different outcome

Counting Combinations

If the following are true:

- We are counting outcomes to an experiment or process, where
- we are selecting k items from a fixed set of n items
- we are selecting without replacement (each item can only be selected once)
- and the ordering of the selected items does not matter: rearranging does not give a different outcome
- then we are counting combinationsations.

Counting Combinations

If the following are true:

- We are counting outcomes to an experiment or process, where
- we are selecting k items from a fixed set of n items
- we are selecting without replacement (each item can only be selected once)
- and the ordering of the selected items does not matter: rearranging does not give a different outcome
- then we are counting combinationsations.
- The number of combinations of k items chosen from a set of n items is ${ }_{n} C_{k}$ or (binomial coefficient notation $\binom{n}{k}=\frac{n!}{k!(n-k)!}$

