1) $S=\{(1 H, 1 T, 2 H, 2 T, 3 H, 3 T, 4 H, 4 T, 5 H, 5 T, 6 H, 6 T\}$
2) a) $P\left(A^{\prime}\right)=0.4$
b) $P(A \cup B)=0.9$
c) $P(A \mid B)=\frac{5}{8}$
d) $P(B \mid A) \frac{5}{6}$
e) $P\left(A \cap B^{\prime}\right)=0.1$
f) Are A and B mutually exclusive? Explain.

No: if they were mutually exclusive, we would have $P(A \cap B)=0$
g) Are A and B independent? Explain.

No: this can be shown in any one of several ways. Either show that $P(A=\operatorname{cap} B) \neq P(A) P(B)$, or show that $P(A \mid B) \neq P(A)$, or show that $P(B \mid A) \neq P(B)$
3) Let $\mathrm{E}=$ "The number that shows is even", and $\mathrm{G}=$ "The number is greater than 2 "
a) $P(E)=\frac{3}{6}=\frac{1}{2}$
b) Are the events "The number is even" and "The number is greater than 2 " independent? Explain. Yes, because (for example) $P(A \cap B)=\frac{2}{6}=\frac{1}{3}$, and $P(A) P(B)=\frac{1}{2} \frac{4}{6}=\frac{1}{3}$, so $P(A \cap B)=$ $P(A) P(B)$
4) a) All of the probabilities are ≥ 0, so all we need to show is that their sum is 1 : $P(1)+P(2)+P(3)+P(4)+P(5)+P(6)=\frac{2}{9}+\frac{1}{9}+\frac{2}{9}+\frac{1}{9}+\frac{2}{9}+\frac{1}{9}=\frac{9}{9}=1$
b) $P(E)=P(2)+P(4)+P(6)=\frac{1}{9}+\frac{1}{9}+\frac{1}{9}=\frac{3}{9}=\frac{1}{3}$
c) Are the events "The number is even" and "The number is greater than 2 " independent? Explain. Yes, because $P(E \cap G)=P(4)+P(6)=\frac{1}{9}+\frac{1}{9}=\frac{2}{9}$, and $P(G)=P(3)+P(4)+P(5)+P(6)=$ $\frac{2}{9}+\frac{1}{9}+\frac{2}{9}+\frac{1}{9}=\frac{6}{9}=\frac{2}{3}$, so
$P(E) P(G)=\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)=\frac{2}{9}=P(E \cap G)$
5) - $P(T)=0.5$ (half of all the adults were tobacco smokers)

- $P\left(T^{\prime} \cap C\right)=\frac{25,000}{1,000,000}=0.025$
- is a smoker? $P(C \mid T)=\frac{200,000}{500.000}=0.4$
- $P(C)=\frac{225,000}{1,000,000}=0.225$
- $P(T \mid C)=\frac{200,000}{225,000}=\frac{8}{9}$

