Probability - Important Formulas and Rules

```
Addition Rules:
\(P(A \cup B)=P(A)+P(B)-P(A \cap B)\)
special case: If \(A\) and \(B\) are mutually exclusive, \(P(A \cup B)=P(A)+P(B)\)
```

Probability of a complement:
$P(A)+P\left(A^{\prime}\right)=1$
This is because A and A^{\prime} are m.e. and their union is the whole sample space S.
This gives the useful formula
$P\left(A^{\prime}\right)=1-P(A)$
Also useful: for conditional probabilities, $P(A \mid B)+P\left(A^{\prime} \mid B\right)=1 ; P(A \cap B)+P\left(A^{\prime} \cap B\right)=P(B)$

Probability of the empty set:	Probability of a subset:
$P(\emptyset)=0$	If $A \subset B$, then $P(A) \leq P(B)$

(Because the empty set is the complement of the sample space)

DeMorgan's Laws:

$(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$ so $P(A \cap B)=1-P\left(A^{\prime} \cup B^{\prime}\right)$
$(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$ so $P(A \cup B)=1-P\left(A^{\prime} \cap B^{\prime}\right)$

Equally likely outcomes sample spaces:

If S is a finite sample space consisting of n outcomes, they are said to be equally likely outcomes if the probability of each outcome in S is the same: each outcome must have probability $\frac{1}{n}$.
Then $P(A)=\frac{|A|}{|S|}=\frac{\text { the number of outcomes in } \mathrm{A}}{\text { the total number of possible outcomes }}$
Or colloquially, $P(A)=\frac{\text { the number of favorable outcomes }}{\text { the total number of outcomes }}$
where "favorable" just means that they are outcomes we are looking for (they are in the event A), not necessarily that they are good or desirable.

Conditional probabilities:

$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
Note: $P(A \mid B)$ is also written $P_{B}(A)$, and is read as "the probability of A given B".
In the case of an equally likely outcomes sample space, we can compute it by $P(A \mid B)=\frac{|A \cap B|}{|B|}$

Independent events:

The events A and B are independent if $P(A \mid B)=P(A)$ or $P(B \mid A)=P(B)$
Note: if either one of these is true, they are both true and A and B are independent.

Multiplication rules:

$P(A \cap B)=P(A \mid B) P(B)$
also $P(A \cap B)=P(B \mid A) P(A)$
special case: A and B are independent if and only if $P(A \cap B)=P(A) P(B)$
(This gives another way to check for independence.)

Bayes' Theorem:

If $B_{1}, B_{2}, \ldots, B_{n}$ are pairwise mutually exclusive events whose union is S, and A is another event in S, then

$$
P\left(B_{j} \mid A\right)=\frac{P\left(A \mid B_{j}\right.}{\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)}
$$

We say that such events $B_{1}, B_{2}, \ldots, B_{n}$ are mutually exclusive and exhaustive, or that they are a partition of the sample space, or (sometimes) that they tile the sample space.
This theorem provides a way to compute the prior probability $P\left(B_{j} \mid A\right)$ if the posterior probabilities $P\left(A \mid B_{i}\right)$ are all known, as well as the probabilities $P\left(B_{i}\right)$, for all $i=1,2, \ldots, n$

