The (definite) intergral of $f(x)$ between a and b

- The (definite) intergral of $f(x)$ between a and b is written

$$
\int_{a}^{b} f(x) \mathrm{d} x
$$

The (definite) intergral of $f(x)$ between a and b

- The (definite) intergral of $f(x)$ between a and b is written

$$
\int_{a}^{b} f(x) \mathrm{d} x
$$

- a is called the lower limit of integration and b is called the upper limit of integration.

The (definite) intergral of $f(x)$ between a and b

- The (definite) intergral of $f(x)$ between a and b is written

$$
\int_{a}^{b} f(x) \mathrm{d} x
$$

- a is called the lower limit of integration and b is called the upper limit of integration.
- It represents the geometric area under the graph of $f(x)$ between the lines $x=a$ and $x=b$; except that areas where the graph lies below the x-axis are counted as negative.

The (definite) intergral of $f(x)$ between a and b

- The (definite) intergral of $f(x)$ between a and b is written

$$
\int_{a}^{b} f(x) \mathrm{d} x
$$

- a is called the lower limit of integration and b is called the upper limit of integration.
- It represents the geometric area under the graph of $f(x)$ between the lines $x=a$ and $x=b$; except that areas where the graph lies below the x-axis are counted as negative.
- The area is defined as a limit of Riemann sums, which are sums of areas of rectangles.

Some facts about definite integrals:

If $f(x)$ is differentiable at c,

- If $f(x)$ is continuous on the closed interval $[a, b]$, then the definite integral $\int_{a}^{b} f(x) \mathrm{d} x$ exists.

Some facts about definite integrals:

If $f(x)$ is differentiable at c,

- If $f(x)$ is continuous on the closed interval $[a, b]$, then the definite integral $\int_{a}^{b} f(x) \mathrm{d} x$ exists.
- $\int_{a}^{a} f(x) \mathrm{d} x=0$

Some facts about definite integrals:

If $f(x)$ is differentiable at c,

- If $f(x)$ is continuous on the closed interval $[a, b]$, then the definite integral $\int_{a}^{b} f(x) \mathrm{d} x$ exists.
- $\int_{a}^{a} f(x) \mathrm{d} x=0$
- $\int_{b}^{a} f(x) \mathrm{d} x=-\int_{a}^{b} f(x) \mathrm{d} x$
(reversing the limits changes the sign of the integral)

Some facts about definite integrals:

If $f(x)$ is differentiable at c,

- If $f(x)$ is continuous on the closed interval $[a, b]$, then the definite integral $\int_{a}^{b} f(x) \mathrm{d} x$ exists.
- $\int_{a}^{a} f(x) \mathrm{d} x=0$
- $\int_{b}^{a} f(x) \mathrm{d} x=-\int_{a}^{b} f(x) \mathrm{d} x$
(reversing the limits changes the sign of the integral)
- $\int_{b}^{a} c f(x) \mathrm{d} x=c \int_{b}^{a} f(x) \mathrm{d} x$ for any constant c

Some facts about definite integrals:

If $f(x)$ is differentiable at c,

- If $f(x)$ is continuous on the closed interval $[a, b]$, then the definite integral $\int_{a}^{b} f(x) \mathrm{d} x$ exists.
- $\int_{a}^{a} f(x) \mathrm{d} x=0$
- $\int_{b}^{a} f(x) \mathrm{d} x=-\int_{a}^{b} f(x) \mathrm{d} x$
(reversing the limits changes the sign of the integral)
- $\int_{b}^{a} c f(x) \mathrm{d} x=c \int_{b}^{a} f(x) \mathrm{d} x$ for any constant c
- $\int_{b}^{a}(f(x)+g(x)) \mathrm{d} x=\int_{b}^{a} f(x) \mathrm{d} x+\int_{b}^{a} g(x) \mathrm{d} x$

Example 1: finding a definite integral by computing an area

Find the definite integral $\int_{0}^{4}(x-1) \mathrm{d} x$

- First draw the graph of $f(x)=x-1$ between $x=0$ and $x=4$

Example 1: finding a definite integral by computing an area

Find the definite integral $\int_{0}^{4}(x-1) \mathrm{d} x$

- First draw the graph of $f(x)=x-1$ between $x=0$ and $x=4$
- This area consists of two triangles, one below the x-axis and one above the x-axis.

$$
\begin{aligned}
& \text { Blue area }=\frac{1}{2} \cdot 1 \cdot 1=\frac{1}{2} \\
& \text { Orange area }=\frac{1}{2} \cdot 3 \cdot 3=\frac{9}{2} \\
& \int_{0}^{4}(x-1) \mathrm{d} x=\frac{9}{2}-\frac{1}{2}=\frac{8}{2}=4
\end{aligned}
$$

The Fundamental Theorem of Calculus (part 2)

- If $F(x)$ is any antiderivative of $f(x)$ on the interval $[a, b]$, then the integral of $f(x)$ from a to b can be computed by

$$
\int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a)
$$

The Fundamental Theorem of Calculus (part 2)

- If $F(x)$ is any antiderivative of $f(x)$ on the interval $[a, b]$, then the integral of $f(x)$ from a to b can be computed by
$\int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a)$
- Note: The general antiderivative $\int f(x) \mathrm{d} x$ is also called the indefinite integral of $f(x)$ because of this.

Example 2

Find the area under the graph of $f(x)=x^{2}$ between $x=0$ and $x=1$

- This area is $\int_{0}^{1} x^{2} \mathrm{~d} x$

Example 2

Find the area under the graph of $f(x)=x^{2}$ between $x=0$ and $x=1$

- This area is $\int_{0}^{1} x^{2} \mathrm{~d} x$
- $F(x)=\frac{x^{3}}{3}$ is an antiderivative of x^{2}, so we can compute this definite integral:

Example 2

Find the area under the graph of $f(x)=x^{2}$ between $x=0$ and $x=1$

- This area is $\int_{0}^{1} x^{2} \mathrm{~d} x$
- $F(x)=\frac{x^{3}}{3}$ is an antiderivative of x^{2}, so we can compute this definite integral:
- $\int_{0}^{1} x^{2} \mathrm{~d} x=F(1)-F(0)$

Example 2

Find the area under the graph of $f(x)=x^{2}$ between $x=0$ and $x=1$

- This area is $\int_{0}^{1} x^{2} \mathrm{~d} x$
- $F(x)=\frac{x^{3}}{3}$ is an antiderivative of x^{2}, so we can compute this definite integral:
- $\int_{0}^{1} x^{2} \mathrm{~d} x=F(1)-F(0)$
- $=\frac{1^{3}}{3}-\frac{0^{3}}{3}$

Example 2

Find the area under the graph of $f(x)=x^{2}$ between $x=0$ and $x=1$

- This area is $\int_{0}^{1} x^{2} \mathrm{~d} x$
- $F(x)=\frac{x^{3}}{3}$ is an antiderivative of x^{2}, so we can compute this definite integral:
- $\int_{0}^{1} x^{2} \mathrm{~d} x=F(1)-F(0)$
- $=\frac{1^{3}}{3}-\frac{0^{3}}{3}$
- $=\frac{1}{3}-0$

Example 2

Find the area under the graph of $f(x)=x^{2}$ between $x=0$ and $x=1$

- This area is $\int_{0}^{1} x^{2} \mathrm{~d} x$
- $F(x)=\frac{x^{3}}{3}$ is an antiderivative of x^{2}, so we can compute this definite integral:
- $\int_{0}^{1} x^{2} \mathrm{~d} x=F(1)-F(0)$
- $=\frac{1^{3}}{3}-\frac{0^{3}}{3}$
- $=\frac{1}{3}-0$
- $=\frac{1}{3}$, so the area is $\frac{1}{3}$

Example 2

Find the area under the graph of $f(x)=x^{2}$ between $x=0$ and $x=1$

- This area is $\int_{0}^{1} x^{2} d x$
- $F(x)=\frac{x^{3}}{3}$ is an antiderivative of x^{2}, so we can compute this definite integral:
- $\int_{0}^{1} x^{2} \mathrm{~d} x=F(1)-F(0)$
- $=\frac{1^{3}}{3}-\frac{0^{3}}{3}$
- $=\frac{1}{3}-0$
- $=\frac{1}{3}$, so the area is $\frac{1}{3}$
- See the next slide for a better notation

Example 2, using a better notation

$$
\int_{0}^{1} x^{2} d x
$$

Example 2, using a better notation

- $\int_{0}^{1} x^{2} \mathrm{~d} x$
- $F(x)=\frac{x^{3}}{3}$ is an antiderivative of x^{2}, so we can compute this definite integral:

Example 2, using a better notation

- $\int_{0}^{1} x^{2} d x$
- $F(x)=\frac{x^{3}}{3}$ is an antiderivative of x^{2}, so we can compute this definite integral:
- $\int_{0}^{1} x^{2} \mathrm{~d} x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}$

Example 2, using a better notation

- $\int_{0}^{1} x^{2} d x$
- $F(x)=\frac{x^{3}}{3}$ is an antiderivative of x^{2}, so we can compute this definite integral:
- $\int_{0}^{1} x^{2} \mathrm{~d} x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}$
- Read it as: $\frac{x^{3}}{3}$ evaluated from 0 to 1 .

Example 2, using a better notation

- $\int_{0}^{1} x^{2} d x$
- $F(x)=\frac{x^{3}}{3}$ is an antiderivative of x^{2}, so we can compute this definite integral:
- $\int_{0}^{1} x^{2} \mathrm{~d} x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}$
- $=\frac{1^{3}}{3}-\frac{0^{3}}{3}$

Example 2, using a better notation

- $\int_{0}^{1} x^{2} d x$
- $F(x)=\frac{x^{3}}{3}$ is an antiderivative of x^{2}, so we can compute this definite integral:
- $\int_{0}^{1} x^{2} \mathrm{~d} x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}$
- $=\frac{1^{3}}{3}-\frac{0^{3}}{3}$
- $=\frac{1}{3}-0$

Example 2, using a better notation

- $\int_{0}^{1} x^{2} d x$
- $F(x)=\frac{x^{3}}{3}$ is an antiderivative of x^{2}, so we can compute this definite integral:
- $\int_{0}^{1} x^{2} \mathrm{~d} x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}$
- $=\frac{1^{3}}{3}-\frac{0^{3}}{3}$
- $=\frac{1}{3}-0$
- $=\frac{1}{3}$, so the area is $\frac{1}{3}$

Example 3

Evaluate the integral $\int_{1}^{3} e^{x} \mathrm{~d} x$

- $\int_{1}^{3} e^{x} \mathrm{~d} x=\left.e^{x}\right|_{1} ^{3}$

Example 3

Evaluate the integral $\int_{1}^{3} e^{x} \mathrm{~d} x$

- $\int_{1}^{3} e^{x} \mathrm{~d} x=\left.e^{x}\right|_{1} ^{3}$
- $=e^{3}-e^{1}$

Example 3

Evaluate the integral $\int_{1}^{3} e^{x} d x$

- $\int_{1}^{3} e^{x} \mathrm{~d} x=\left.e^{x}\right|_{1} ^{3}$
- $=e^{3}-e^{1}$
- $=e^{3}-e$

Example 4

Evaluate the integral $\int_{3}^{6} \frac{d x}{x}$

- Note: $\int_{3}^{6} \frac{\mathrm{dx}}{x}$ is a short way to write $\int_{3}^{6}\left(\frac{1}{x}\right) \mathrm{d} x$

Example 4

Evaluate the integral $\int_{3}^{6} \frac{\mathrm{~d} x}{x}$

- Note: $\int_{3}^{6} \frac{d x}{x}$ is a short way to write $\int_{3}^{6}\left(\frac{1}{x}\right) d x$
- $\int_{3}^{6}\left(\frac{1}{x}\right) \mathrm{d} x=\left.\ln x\right|_{1} ^{3}$

Example 4

Evaluate the integral $\int_{3}^{6} \frac{\mathrm{~d} x}{x}$

- Note: $\int_{3}^{6} \frac{\mathrm{~d} x}{x}$ is a short way to write $\int_{3}^{6}\left(\frac{1}{x}\right) \mathrm{d} x$
- $\int_{3}^{6}\left(\frac{1}{x}\right) \mathrm{d} x=\left.\ln x\right|_{1} ^{3}$
- $=\ln 6-\ln 3$

Example 4

Evaluate the integral $\int_{3}^{6} \frac{\mathrm{~d} x}{x}$

- Note: $\int_{3}^{6} \frac{\mathrm{~d} x}{x}$ is a short way to write $\int_{3}^{6}\left(\frac{1}{x}\right) \mathrm{d} x$
- $\int_{3}^{6}\left(\frac{1}{x}\right) \mathrm{d} x=\left.\ln x\right|_{1} ^{3}$
- $=\ln 6-\ln 3$
- $=\ln \left(\frac{6}{3}\right)$

Example 4

Evaluate the integral $\int_{3}^{6} \frac{\mathrm{~d} x}{x}$

- Note: $\int_{3}^{6} \frac{\mathrm{~d} x}{x}$ is a short way to write $\int_{3}^{6}\left(\frac{1}{x}\right) \mathrm{d} x$
- $\int_{3}^{6}\left(\frac{1}{x}\right) \mathrm{d} x=\left.\ln x\right|_{1} ^{3}$
- $=\ln 6-\ln 3$
- $=\ln \left(\frac{6}{3}\right)$
- $=\ln (2)$

