Logarithmic Differentiation

This is used to find the derivative $\frac{d y}{d x}$ when y is a function which has x in both the base and the exponent.
For example,

- $y=x^{x}$
- $y=x^{\sin (x)}$
- $y=(1+x)^{\frac{1}{x}}$

Example 1:

Use logarithmic differentiation to find the derivative $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $y=x^{x}$.

- First take the natural logarithm of both sides of the equation: $\ln (y)=\ln \left(x^{x}\right)$

Example 1:

Use logarithmic differentiation to find the derivative $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $y=x^{x}$.

- First take the natural logarithm of both sides of the equation:
$\ln (y)=\ln \left(x^{x}\right)$
- Then use the "log of a power" rule: $\ln (y)=x \ln (x)$

Example 1:

Use logarithmic differentiation to find the derivative $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $y=x^{x}$.

- First take the natural logarithm of both sides of the equation: $\ln (y)=\ln \left(x^{x}\right)$
- Then use the "log of a power" rule: $\ln (y)=x \ln (x)$
- Now differentiate implicitly:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\ln (y))=\frac{\mathrm{d}}{\mathrm{~d} x}(x \ln (x))
$$

Example 1:

Use logarithmic differentiation to find the derivative $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $y=x^{x}$.

- First take the natural logarithm of both sides of the equation:

$$
\ln (y)=\ln \left(x^{x}\right)
$$

- Then use the "log of a power" rule:

$$
\ln (y)=x \ln (x)
$$

- Now differentiate implicitly:
$\frac{\mathrm{d}}{\mathrm{d} x}(\ln (y))=\frac{\mathrm{d}}{\mathrm{d} x}(x \ln (x))$
$-\frac{1}{y} \cdot \frac{\mathrm{~d} y}{\mathrm{~d} x}=(1)(\ln (x))+x\left(\frac{1}{x}\right)$

Example 1:

Use logarithmic differentiation to find the derivative $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $y=x^{x}$.

- First take the natural logarithm of both sides of the equation:

$$
\ln (y)=\ln \left(x^{x}\right)
$$

- Then use the "log of a power" rule:

$$
\ln (y)=x \ln (x)
$$

- Now differentiate implicitly:
$\frac{\mathrm{d}}{\mathrm{d} x}(\ln (y))=\frac{\mathrm{d}}{\mathrm{d} x}(x \ln (x))$
- $\frac{1}{y} \cdot \frac{\mathrm{~d} y}{\mathrm{~d} x}=(1)(\ln (x))+x\left(\frac{1}{x}\right)$
- $\frac{1}{y} \cdot \frac{\mathrm{~d} y}{\mathrm{~d} x}=\ln (x)+1$

Example 1:

Use logarithmic differentiation to find the derivative $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $y=x^{x}$.

- First take the natural logarithm of both sides of the equation:

$$
\ln (y)=\ln \left(x^{x}\right)
$$

- Then use the "log of a power" rule:

$$
\ln (y)=x \ln (x)
$$

- Now differentiate implicitly:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\ln (y))=\frac{\mathrm{d}}{\mathrm{~d} x}(x \ln (x))
$$

- $\frac{1}{y} \cdot \frac{\mathrm{~d} y}{\mathrm{~d} x}=(1)(\ln (x))+x\left(\frac{1}{x}\right)$
$-\frac{1}{y} \cdot \frac{\mathrm{~d} y}{\mathrm{~d} x}=\ln (x)+1$
- $\frac{\mathrm{d} y}{\mathrm{~d} x}=y(\ln (x)+1)$

Example 1:

Use logarithmic differentiation to find the derivative $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $y=x^{x}$.

- First take the natural logarithm of both sides of the equation:

$$
\ln (y)=\ln \left(x^{x}\right)
$$

- Then use the "log of a power" rule:

$$
\ln (y)=x \ln (x)
$$

- Now differentiate implicitly:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\ln (y))=\frac{\mathrm{d}}{\mathrm{~d} x}(x \ln (x))
$$

- $\frac{1}{y} \cdot \frac{\mathrm{~d} y}{\mathrm{~d} x}=(1)(\ln (x))+x\left(\frac{1}{x}\right)$
$-\frac{1}{y} \cdot \frac{\mathrm{~d} y}{\mathrm{~d} x}=\ln (x)+1$
- $\frac{\mathrm{d} y}{\mathrm{~d} x}=y(\ln (x)+1)$
- $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{x}(\ln (x)+1)$

