Logarithmic Differentiation

This is used to find the derivative $\frac{dy}{dx}$ when y is a function which has x in both the base and the exponent. For example,

y = x^x
y = x^{sin(x)}
y = (1 + x)^{1/x}

Use logarithmic differentiation to find the derivative $\frac{dy}{dx}$ if $y = x^x$.

First take the natural logarithm of both sides of the equation: $ln(y) = ln(x^x)$

Use logarithmic differentiation to find the derivative $\frac{dy}{dx}$ if $y = x^x$.

► First take the natural logarithm of both sides of the equation: ln(y) = ln (x^x)

• Then use the "log of a power" rule: ln(y) = x ln(x)

Use logarithmic differentiation to find the derivative $\frac{dy}{dx}$ if $y = x^x$.

► First take the natural logarithm of both sides of the equation: ln(y) = ln (x^x)

- Then use the "log of a power" rule: ln(y) = x ln(x)
- Now differentiate implicitly:

$$\frac{\mathrm{d}}{\mathrm{d}x}(\ln(y)) = \frac{\mathrm{d}}{\mathrm{d}x}(x\ln(x))$$

Use logarithmic differentiation to find the derivative $\frac{dy}{dx}$ if $y = x^x$.

► First take the natural logarithm of both sides of the equation: ln(y) = ln (x^x)

- ► Then use the "log of a power" rule: ln(y) = x ln (x)
- Now differentiate implicitly:

$$\frac{\mathrm{d}}{\mathrm{d}x}(\ln(y)) = \frac{\mathrm{d}}{\mathrm{d}x}(x\ln(x))$$

•
$$\frac{1}{y} \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = (1)(\ln(x)) + x\left(\frac{1}{x}\right)$$

Use logarithmic differentiation to find the derivative $\frac{dy}{dx}$ if $y = x^x$.

► First take the natural logarithm of both sides of the equation: ln(y) = ln (x^x)

- ► Then use the "log of a power" rule: ln(y) = x ln (x)
- Now differentiate implicitly: $\frac{d}{dx}(\ln(y)) = \frac{d}{dx}(x\ln(x))$ $\frac{1}{y} \cdot \frac{dy}{dx} = (1)(\ln(x)) + x\left(\frac{1}{x}\right)$ $\frac{1}{y} \cdot \frac{dy}{dx} = \ln(x) + 1$

Use logarithmic differentiation to find the derivative $\frac{dy}{dx}$ if $y = x^x$.

► First take the natural logarithm of both sides of the equation: ln(y) = ln (x^x)

- ► Then use the "log of a power" rule: ln(y) = x ln (x)
- Now differentiate implicitly: $\frac{d}{dx}(\ln(y)) = \frac{d}{dx}(x\ln(x))$ $\frac{1}{y} \cdot \frac{dy}{dx} = (1)(\ln(x)) + x\left(\frac{1}{x}\right)$ $\frac{1}{y} \cdot \frac{dy}{dx} = \ln(x) + 1$ $\frac{dy}{dx} = y(\ln(x) + 1)$

Use logarithmic differentiation to find the derivative $\frac{dy}{dx}$ if $y = x^x$.

► First take the natural logarithm of both sides of the equation: ln(y) = ln (x^x)

- ► Then use the "log of a power" rule: ln(y) = x ln (x)
- Now differentiate implicitly: $\frac{\mathrm{d}}{\mathrm{d}x}(\ln(y)) = \frac{\mathrm{d}}{\mathrm{d}x}(x\ln(x))$ $\frac{1}{y} \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = (1)(\ln(x)) + x\left(\frac{1}{x}\right)$ $\frac{1}{v} \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = \ln(x) + 1$ • $\frac{\mathrm{d}y}{\mathrm{d}x} = y(\ln(x) + 1)$ $dy = x^{x}(\ln(x) + 1)$