• Constant Rule: $\frac{d}{dx}(c) = 0$, where c is a constant

• Constant Rule: $\frac{d}{dx}(c) = 0$, where c is a constant

• Derivative of x: $\frac{d}{dx}(x) = 1$

- Constant Rule: $\frac{d}{dx}(c) = 0$, where c is a constant
- Derivative of x: $\frac{d}{dx}(x) = 1$
- Power Rule: $\frac{d}{dx}(x^n) = nx^{n-1}$, where *n* is an integer, n > 1

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- Constant Rule: $\frac{d}{dx}(c) = 0$, where c is a constant
- Derivative of x: $\frac{d}{dx}(x) = 1$
- Power Rule: $\frac{d}{dx}(x^n) = nx^{n-1}$, where *n* is an integer, n > 1

• $\frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x$

- Constant Rule: $\frac{d}{dx}(c) = 0$, where c is a constant
- Derivative of x: $\frac{d}{dx}(x) = 1$
- Power Rule: $\frac{d}{dx}(x^n) = nx^{n-1}$, where *n* is an integer, n > 1

- $\frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x$
- $\frac{\mathrm{d}}{\mathrm{d}x}(\cos x) = -\sin x$

- Constant Rule: $\frac{d}{dx}(c) = 0$, where c is a constant
- Derivative of x: $\frac{d}{dx}(x) = 1$
- Power Rule: $\frac{d}{dx}(x^n) = nx^{n-1}$, where *n* is an integer, n > 1

- $\frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x$
- $\frac{\mathrm{d}}{\mathrm{d}x}(\cos x) = -\sin x$
- $\blacktriangleright \frac{\mathrm{d}}{\mathrm{d}x}(e^x) = e^x$

- Constant Rule: $\frac{d}{dx}(c) = 0$, where c is a constant
- Derivative of x: $\frac{d}{dx}(x) = 1$
- Power Rule: $\frac{d}{dx}(x^n) = nx^{n-1}$, where *n* is an integer, n > 1

- $\frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x$
- $\frac{\mathrm{d}}{\mathrm{d}x}(\cos x) = -\sin x$
- $\blacktriangleright \frac{\mathrm{d}}{\mathrm{d}x}(e^x) = e^x$
- $\blacktriangleright \ \frac{\mathrm{d}}{\mathrm{d}x}(\ln x) = \frac{1}{x}$

Sum/difference and Constant multiple rules

If f(x) and g(x) are differentiable functions, then

Derivative of a sum or difference:

$$\frac{\mathrm{d}}{\mathrm{d}x}(f(x) + g(x)) = f'(x) + g'(x)$$
$$\frac{\mathrm{d}}{\mathrm{d}x}(f(x) - g(x)) = f'(x) - g'(x)$$

Sum/difference and Constant multiple rules

If f(x) and g(x) are differentiable functions, then

- ► Derivative of a sum or difference: $\frac{d}{dx}(f(x) + g(x)) = f'(x) + g'(x)$ $\frac{d}{dx}(f(x) - g(x)) = f'(x) - g'(x)$
- ▶ Derivative of a constant multiple: $\frac{d}{dx}(cf(x)) = c \cdot f'(x)$, where *c* is a constant.

The Product and Quotient rules

If f(x) and g(x) are differentiable functions, then

• **Product Rule:** $\frac{d}{dx}(f \cdot g) = f \cdot g' + g \cdot f'$

The Product and Quotient rules

If f(x) and g(x) are differentiable functions, then

- **Product Rule:** $\frac{d}{dx}(f \cdot g) = f \cdot g' + g \cdot f'$
- ▶ Quotient Rule: $\frac{d}{dx}\left(\frac{T}{B}\right) = \frac{B \cdot T' T \cdot B'}{B^2}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ► The second derivative: f''(x) or d²/dx²(f(x)) or d²f/dx² is the derivative of the (first) derivative of f
- ► The third derivative: f'''(x) or d³/dx³(f(x)) or d³f/dx³ is the derivative of the second derivative of f

- ► The second derivative: f''(x) or d²/dx²(f(x)) or d²f/dx² is the derivative of the (first) derivative of f
- ► The third derivative: f'''(x) or d³/dx³(f(x)) or d³f/dx³ is the derivative of the second derivative of f
- ► The fourth and higher derivatives: Generally we avoid using the prime notation for these.

- ► The second derivative: f''(x) or d²/dx²(f(x)) or d²f/dx² is the derivative of the (first) derivative of f
- ► The third derivative: f'''(x) or d³/dx³(f(x)) or d³f/dx³ is the derivative of the second derivative of f
- The fourth and higher derivatives: Generally we avoid using the prime notation for these.
- ► Instead we use f⁽⁴⁾(x) or d⁴/dx⁴ (f(x)) or d⁴f/dx⁴ for the fourth derivative, which is the derivative of the third derivative of f, and similarly for the fifth, sixth, etc. derivatives.