Some basic derivatives

- Constant Rule: $\frac{\mathrm{d}}{\mathrm{d} x}(c)=0$, where c is a constant

Some basic derivatives

- Constant Rule: $\frac{\mathrm{d}}{\mathrm{d} x}(c)=0$, where c is a constant
- Derivative of $\mathbf{x}: \frac{\mathrm{d}}{\mathrm{d} x}(x)=1$

Some basic derivatives

- Constant Rule: $\frac{\mathrm{d}}{\mathrm{d} x}(c)=0$, where c is a constant
- Derivative of $\mathbf{x}: \frac{\mathrm{d}}{\mathrm{d} x}(x)=1$
- Power Rule: $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{n}\right)=n x^{n-1}$, where n is an integer, $n>1$

Some basic derivatives

- Constant Rule: $\frac{\mathrm{d}}{\mathrm{d} x}(c)=0$, where c is a constant
- Derivative of $\mathbf{x}: \frac{\mathrm{d}}{\mathrm{d} x}(x)=1$
- Power Rule: $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{n}\right)=n x^{n-1}$, where n is an integer, $n>1$
- $\frac{\mathrm{d}}{\mathrm{d} x}(\sin x)=\cos x$

Some basic derivatives

- Constant Rule: $\frac{\mathrm{d}}{\mathrm{d} x}(c)=0$, where c is a constant
- Derivative of $\mathbf{x}: \frac{\mathrm{d}}{\mathrm{d} x}(x)=1$
- Power Rule: $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{n}\right)=n x^{n-1}$, where n is an integer, $n>1$
- $\frac{\mathrm{d}}{\mathrm{d} x}(\sin x)=\cos x$
- $\frac{\mathrm{d}}{\mathrm{d} x}(\cos x)=-\sin x$

Some basic derivatives

- Constant Rule: $\frac{\mathrm{d}}{\mathrm{d} x}(c)=0$, where c is a constant
- Derivative of $\mathbf{x}: \frac{\mathrm{d}}{\mathrm{d} x}(x)=1$
- Power Rule: $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{n}\right)=n x^{n-1}$, where n is an integer, $n>1$
- $\frac{\mathrm{d}}{\mathrm{d} x}(\sin x)=\cos x$
- $\frac{\mathrm{d}}{\mathrm{d} x}(\cos x)=-\sin x$
- $\frac{\mathrm{d}}{\mathrm{d} x}\left(e^{x}\right)=e^{x}$

Some basic derivatives

- Constant Rule: $\frac{\mathrm{d}}{\mathrm{d} x}(c)=0$, where c is a constant
- Derivative of $\mathbf{x}: \frac{\mathrm{d}}{\mathrm{d} x}(x)=1$
- Power Rule: $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{n}\right)=n x^{n-1}$, where n is an integer, $n>1$
- $\frac{\mathrm{d}}{\mathrm{d} x}(\sin x)=\cos x$
- $\frac{\mathrm{d}}{\mathrm{d} x}(\cos x)=-\sin x$
- $\frac{\mathrm{d}}{\mathrm{d} x}\left(e^{x}\right)=e^{x}$
- $\frac{\mathrm{d}}{\mathrm{d} x}(\ln x)=\frac{1}{x}$

Sum/difference and Constant multiple rules

If $f(x)$ and $g(x)$ are differentiable functions, then

- Derivative of a sum or difference:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{dx}}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x) \\
& \frac{\mathrm{d}}{\mathrm{dx}}(f(x)-g(x))=f^{\prime}(x)-g^{\prime}(x)
\end{aligned}
$$

Sum/difference and Constant multiple rules

If $f(x)$ and $g(x)$ are differentiable functions, then

- Derivative of a sum or difference:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x) \\
& \frac{\mathrm{d}}{\mathrm{~d} x}(f(x)-g(x))=f^{\prime}(x)-g^{\prime}(x)
\end{aligned}
$$

- Derivative of a constant multiple: $\frac{\mathrm{d}}{\mathrm{d} x}(c f(x))=c \cdot f^{\prime}(x)$, where c is a constant.

The Product and Quotient rules

If $f(x)$ and $g(x)$ are differentiable functions, then

- Product Rule: $\frac{\mathrm{d}}{\mathrm{d} x}(f \cdot g)=f \cdot g^{\prime}+g \cdot f^{\prime}$

The Product and Quotient rules

If $f(x)$ and $g(x)$ are differentiable functions, then

- Product Rule: $\frac{\mathrm{d}}{\mathrm{d} x}(f \cdot g)=f \cdot g^{\prime}+g \cdot f^{\prime}$
- Quotient Rule: $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{T}{B}\right)=\frac{B \cdot T^{\prime}-T \cdot B^{\prime}}{B^{2}}$

Higher derivatives: Notation

- The second derivative: $f^{\prime \prime}(x)$ or $\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}(f(x))$ or $\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}$ is the derivative of the (first) derivative of f

Higher derivatives: Notation

- The second derivative: $f^{\prime \prime}(x)$ or $\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}(f(x))$ or $\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}$ is the derivative of the (first) derivative of f
- The third derivative: $f^{\prime \prime \prime}(x)$ or $\frac{\mathrm{d}^{3}}{\mathrm{~d} x^{3}}(f(x))$ or $\frac{\mathrm{d}^{3} f}{\mathrm{~d} x^{3}}$ is the derivative of the second derivative of f

Higher derivatives: Notation

- The second derivative: $f^{\prime \prime}(x)$ or $\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}(f(x))$ or $\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}$ is the derivative of the (first) derivative of f
- The third derivative: $f^{\prime \prime \prime}(x)$ or $\frac{\mathrm{d}^{3}}{\mathrm{~d} x^{3}}(f(x))$ or $\frac{\mathrm{d}^{3} f}{\mathrm{~d} x^{3}}$ is the derivative of the second derivative of f
- The fourth and higher derivatives: Generally we avoid using the prime notation for these.

Higher derivatives: Notation

- The second derivative: $f^{\prime \prime}(x)$ or $\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}(f(x))$ or $\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}$ is the derivative of the (first) derivative of f
- The third derivative: $f^{\prime \prime \prime}(x)$ or $\frac{\mathrm{d}^{3}}{\mathrm{~d} x^{3}}(f(x))$ or $\frac{\mathrm{d}^{3} f}{\mathrm{~d} x^{3}}$ is the derivative of the second derivative of f
- The fourth and higher derivatives: Generally we avoid using the prime notation for these.
- Instead we use $f^{(4)}(x)$ or $\frac{\mathrm{d}^{4}}{\mathrm{~d} \mathrm{x}^{4}}(f(x))$ or $\frac{\mathrm{d}^{4} f}{\mathrm{~d} x^{4}}$ for the fourth derivative, which is the derivative of the third derivative of f, and similarly for the fifth, sixth, etc. derivatives.

