Composite Functions

- Recall that we find the composite function $f(u(x))$ by substituting $u(x)$ in place of x in the formula for f

Composite Functions

- Recall that we find the composite function $f(u(x))$ by substituting $u(x)$ in place of x in the formula for f
- Example: if $f(x)=x^{4}$ and $u(x)=5-x$, then $f(u(x))=(5-x)^{4}$

Composite Functions

- Recall that we find the composite function $f(u(x))$ by substituting $u(x)$ in place of x in the formula for f
- Example: if $f(x)=x^{4}$ and $u(x)=5-x$, then $f(u(x))=(5-x)^{4}$
- If $f(x)=\sqrt{x}$ and $u(x)=x^{2}+1$, what is $f(u(x))$?

Composite Functions

- Recall that we find the composite function $f(u(x))$ by substituting $u(x)$ in place of x in the formula for f
- Example: if $f(x)=x^{4}$ and $u(x)=5-x$, then $f(u(x))=(5-x)^{4}$
- If $f(x)=\sqrt{x}$ and $u(x)=x^{2}+1$, what is $f(u(x))$?
- $f(u(x))=\sqrt{x^{2}+1}$

Composite Functions

- Recall that we find the composite function $f(u(x))$ by substituting $u(x)$ in place of x in the formula for f
- Example: if $f(x)=x^{4}$ and $u(x)=5-x$, then $f(u(x))=(5-x)^{4}$
- If $f(x)=e^{x}$ and $u(x)=3 x$, what is $f(u(x))$?

Composite Functions

- Recall that we find the composite function $f(u(x))$ by substituting $u(x)$ in place of x in the formula for f
- Example: if $f(x)=x^{4}$ and $u(x)=5-x$, then $f(u(x))=(5-x)^{4}$
- If $f(x)=e^{x}$ and $u(x)=3 x$, what is $f(u(x))$?
- $f(u(x))=e^{3 x}$

Composite Functions

- Recall that we find the composite function $f(u(x))$ by substituting $u(x)$ in place of x in the formula for f
- Example: if $f(x)=x^{4}$ and $u(x)=5-x$, then $f(u(x))=(5-x)^{4}$
- If $f(x)=x^{2}$ and $u(x)=\sin (x)$, what is $f(u(x))$?

Composite Functions

- Recall that we find the composite function $f(u(x))$ by substituting $u(x)$ in place of x in the formula for f
- Example: if $f(x)=x^{4}$ and $u(x)=5-x$, then $f(u(x))=(5-x)^{4}$
- If $f(x)=x^{2}$ and $u(x)=\sin (x)$, what is $f(u(x))$?
- $f(u(x))=(\sin (x))^{2}=\sin ^{2}(x)$

Recognizing composite functions

In $f(u(x))$, we often refer to f as the outer function and u as the inner function.

- Example: for the function $\ln (\sin (x))$, the outer function is $f(x)=\ln (x)$ and the inner function is $u(x)=\sin (x)$.

Recognizing composite functions

In $f(u(x))$, we often refer to f as the outer function and u as the inner function.

- Example: for the function $\ln (\sin (x))$, the outer function is $f(x)=\ln (x)$ and the inner function is $u(x)=\sin (x)$.
- What are the outer and inner functions for $\tan \left(x^{2}+4\right)$?

Recognizing composite functions

In $f(u(x))$, we often refer to f as the outer function and u as the inner function.

- Example: for the function $\ln (\sin (x))$, the outer function is $f(x)=\ln (x)$ and the inner function is $u(x)=\sin (x)$.
- What are the outer and inner functions for $\tan \left(x^{2}+4\right)$?
- The outer function is $f(x)=\tan (x)$ and the inner function is $u(x)=x^{2}+4$

Recognizing composite functions

In $f(u(x))$, we often refer to f as the outer function and u as the inner function.

- Example: for the function $\ln (\sin (x))$, the outer function is $f(x)=\ln (x)$ and the inner function is $u(x)=\sin (x)$.
-What are the outer and inner functions for $\cos ^{3}(x)$?

Recognizing composite functions

In $f(u(x))$, we often refer to f as the outer function and u as the inner function.

- Example: for the function $\ln (\sin (x))$, the outer function is $f(x)=\ln (x)$ and the inner function is $u(x)=\sin (x)$.
- What are the outer and inner functions for $\cos ^{3}(x)$?
- Recall that $\cos ^{3}(x)$ means $(\cos (x))^{3}$

Recognizing composite functions

In $f(u(x))$, we often refer to f as the outer function and u as the inner function.

- Example: for the function $\ln (\sin (x))$, the outer function is $f(x)=\ln (x)$ and the inner function is $u(x)=\sin (x)$.
- What are the outer and inner functions for $\cos ^{3}(x)$?
- Recall that $\cos ^{3}(x)$ means $(\cos (x))^{3}$
- The outer function is $f(x)=x^{3}$ and the inner function is $u(x)=\cos (x)$

The Chain Rule

For the composite function $y=f(u(x))$, the derivative is
$y^{\prime}=f^{\prime}(u(x)) \cdot u^{\prime}(x)$

Another way to write this is

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \cdot \frac{\mathrm{~d} u}{\mathrm{~d} x}
$$

"The derivative of the outer times the derivative of the inner."

Special case: the General Power Rule

For the function $y=(u(x))^{n}$, the derivative is
$y^{\prime}=n(u(x))^{n-1} \cdot u^{\prime}(x)$

Special case: Exponential Functions

For the function $y=e^{u(x)}$, the derivative is $y^{\prime}=u^{\prime}(x) e^{u(x)}$

Implicit Differentiation

This is used to find the derivative $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in case it is difficult or impossible to solve for y explicitly in terms of x. In this case we will use the Chain Rule in the form

$$
\frac{\mathrm{d}}{\mathrm{~d} x} f(y(x))=f^{\prime}(y) \cdot \frac{\mathrm{d} y}{\mathrm{~d} x}
$$

