▶ Recall that we find the composite function f(u(x)) by substituting u(x) in place of x in the formula for f

- ▶ Recall that we find the composite function f(u(x)) by substituting u(x) in place of x in the formula for f
- ► **Example:** if $f(x) = x^4$ and u(x) = 5 x, then $f(u(x)) = (5 x)^4$

- ▶ Recall that we find the composite function f(u(x)) by substituting u(x) in place of x in the formula for f
- ▶ **Example:** if $f(x) = x^4$ and u(x) = 5 x, then $f(u(x)) = (5 x)^4$
- ▶ If $f(x) = \sqrt{x}$ and $u(x) = x^2 + 1$, what is f(u(x)) ?

- ▶ Recall that we find the composite function f(u(x)) by substituting u(x) in place of x in the formula for f
- ▶ **Example:** if $f(x) = x^4$ and u(x) = 5 x, then $f(u(x)) = (5 x)^4$
- ▶ If $f(x) = \sqrt{x}$ and $u(x) = x^2 + 1$, what is f(u(x)) ?
- $f(u(x)) = \sqrt{x^2 + 1}$

- ▶ Recall that we find the composite function f(u(x)) by substituting u(x) in place of x in the formula for f
- ▶ **Example:** if $f(x) = x^4$ and u(x) = 5 x, then $f(u(x)) = (5 x)^4$

▶ If $f(x) = e^x$ and u(x) = 3x, what is f(u(x)) ?

- ▶ Recall that we find the composite function f(u(x)) by substituting u(x) in place of x in the formula for f
- ▶ **Example:** if $f(x) = x^4$ and u(x) = 5 x, then $f(u(x)) = (5 x)^4$

- ▶ If $f(x) = e^x$ and u(x) = 3x, what is f(u(x)) ?
- $f(u(x)) = e^{3x}$

- ▶ Recall that we find the composite function f(u(x)) by substituting u(x) in place of x in the formula for f
- ▶ **Example:** if $f(x) = x^4$ and u(x) = 5 x, then $f(u(x)) = (5 x)^4$

▶ If
$$f(x) = x^2$$
 and $u(x) = \sin(x)$, what is $f(u(x))$?

- ▶ Recall that we find the composite function f(u(x)) by substituting u(x) in place of x in the formula for f
- ▶ **Example:** if $f(x) = x^4$ and u(x) = 5 x, then $f(u(x)) = (5 x)^4$

- ▶ If $f(x) = x^2$ and $u(x) = \sin(x)$, what is f(u(x)) ?
- $f(u(x)) = (\sin(x))^2 = \sin^2(x)$

In f(u(x)), we often refer to f as the **outer function** and u as the **inner function**.

▶ **Example:** for the function $\ln(\sin(x))$, the outer function is $f(x) = \ln(x)$ and the inner function is $u(x) = \sin(x)$.

In f(u(x)), we often refer to f as the **outer function** and u as the **inner function**.

- **Example:** for the function $\ln(\sin(x))$, the outer function is $f(x) = \ln(x)$ and the inner function is $u(x) = \sin(x)$.
- ▶ What are the outer and inner functions for $tan(x^2 + 4)$?

In f(u(x)), we often refer to f as the **outer function** and u as the **inner function**.

- **Example:** for the function $\ln(\sin(x))$, the outer function is $f(x) = \ln(x)$ and the inner function is $u(x) = \sin(x)$.
- ▶ What are the outer and inner functions for $tan(x^2 + 4)$?
- ► The outer function is f(x) = tan(x)and the inner function is $u(x) = x^2 + 4$

In f(u(x)), we often refer to f as the **outer function** and u as the **inner function**.

Example: for the function $\ln(\sin(x))$, the outer function is $f(x) = \ln(x)$ and the inner function is $u(x) = \sin(x)$.

▶ What are the outer and inner functions for $\cos^3(x)$?

In f(u(x)), we often refer to f as the **outer function** and u as the **inner function**.

Example: for the function $\ln(\sin(x))$, the outer function is $f(x) = \ln(x)$ and the inner function is $u(x) = \sin(x)$.

- ▶ What are the outer and inner functions for $\cos^3(x)$?
- ► Recall that $\cos^3(x)$ means $(\cos(x))^3$

In f(u(x)), we often refer to f as the **outer function** and u as the **inner function**.

Example: for the function $\ln(\sin(x))$, the outer function is $f(x) = \ln(x)$ and the inner function is $u(x) = \sin(x)$.

- ▶ What are the outer and inner functions for $\cos^3(x)$?
- ▶ Recall that $\cos^3(x)$ means $(\cos(x))^3$
- ► The outer function is $f(x) = x^3$ and the inner function is $u(x) = \cos(x)$

The Chain Rule

For the composite function y = f(u(x)), the derivative is $y' = f'(u(x)) \cdot u'(x)$

Another way to write this is $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

"The derivative of the outer times the derivative of the inner."

Special case: the General Power Rule

For the function $y = (u(x))^n$, the derivative is $y' = n(u(x))^{n-1} \cdot u'(x)$

Special case: Exponential Functions

For the function $y = e^{u(x)}$, the derivative is $y' = u'(x)e^{u(x)}$

Implicit Differentiation

This is used to find the derivative $\frac{\mathrm{d}y}{\mathrm{d}x}$ in case it is difficult or impossible to solve for y explicitly in terms of x. In this case we will use the Chain Rule in the form

$$\frac{\mathrm{d}}{\mathrm{d}x}f(y(x)) = f'(y) \cdot \frac{\mathrm{d}y}{\mathrm{d}x}$$