1) For the function $f(x)$ whose graph is given above, find each of the following values or limits. If the limit does not exist, please write "Does not exist." If the limit is ∞ or $-\infty$, say so.
a) $f(-3)=-2$
b) $\lim _{x \rightarrow-3^{-}} f(x)=-2$
c) $\lim _{x \rightarrow-3^{+}} f(x)=0$
d) $\lim _{x \rightarrow 3} f(x)$ does not exist
e) $f(4)=1$
f) $\lim _{x \rightarrow 4} f(x)=2$
g) $\lim _{x \rightarrow 2^{-}} f(x)=-\infty$
h) $\lim _{x \rightarrow 2^{+}} f(x)=3$
i) $f(0)$ is undefined
j) $\lim _{x \rightarrow 0} f(x)=\infty$
2) For the function $f(x)=\frac{\sin x}{x}$, find each of the values to complete the table:

x	$\mathrm{f}(\mathrm{x})$ to 6 decimal places	x	$\mathrm{f}(\mathrm{x})$ to 6 decimal places
1	0.841471	-1	-0.841471
0.1	0.998334	-0.1	-0.998334
0.01	0.999983	-0.01	-0.999983
0.001	1.000000	-0.001	-1.000000
0.0001	1.000000	-0.0001	-1.000000

The limit seems to be 1 . The values of the function are getting very close to 1 as x gets close to 0 .
3) a) We cannot find this limit directly by substitution, because both the numerator and denominator are 0 when we substitute in $\mathrm{x}=2$. However, we can factor the numerator and denominator and use the theorem about limits of functions that agree except at one point:

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}+x-6} & =\lim _{x \rightarrow 2} \frac{(x+2)(x-2)}{(x+3)(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{x+2}{x+3} \\
& =\frac{2+2}{2+3} \\
& =\frac{4}{5}
\end{aligned}
$$

b) Here we can find the limit by substitution because this is a limit of a rational function and -2 is in the domain of that function:

$$
\begin{aligned}
\lim _{x \rightarrow-2} \frac{x^{2}-4}{x^{2}+x-6} & =\frac{(-2)^{2}-4}{(-2)^{2}+(-2)-6} \\
& =\frac{0}{-4} \\
& =0
\end{aligned}
$$

c) $\lim _{x \rightarrow-3^{+}} \frac{x^{2}-4}{x^{2}+x-6}$ cannot be found by substitution, because the denominator is 0 when we substitute. Also, we cannot use the theorem about functions which agree except at a point, because there is no factor in the numerator to cancel the factor $(x+3)$ in the denominator. This limit does not exist: by examining values of the function for x getting close to -3 from the right, we can say more.

x	$\mathrm{f}(\mathrm{x})$
-3.5	3
-3.1	11
-3.01	101
-3.001	1001
-3.0001	10001

The value of the function is growing without bound. So $\lim _{x \rightarrow-3^{+}} \frac{x^{2}-4}{x^{2}+x-6}=\infty$
4)

$f(x)$ is not continuous at these values of x :
$x=-1$: a jump discontinuity
(Note: for more practice, answer this question for the graph in problem \#1:)

$f(x)$ is not continuous at these values of x :
$x=-3:$ a jump discontinuity
$x=0$: an infinite discontinuity
$x=2$: an infinite discontinuity (on the left, at least)
$x=4$: a removable discontinuity
(Note: for yet more practice, see the WeBWorK assignment "Limits-Continuity2".)

