Definition of the Derivative of a Function

Sybil Shaver

February 26, 2018

Defining the derivative of a function at a point

If $f(x)$ is continuous on some open interval, and c is a point in that interval,

- The average rate of change of f between $x=c$ and where $x=c+h$ is the slope of the secant line to the graph of f between the points where $x=c$ and where $x=c+h$

Defining the derivative of a function at a point

If $f(x)$ is continuous on some open interval, and c is a point in that interval,

- The average rate of change of f between $x=c$ and where $x=c+h$ is the slope of the secant line to the graph of f between the points where $x=c$ and where $x=c+h$
- slope of secant line $=\frac{f(c+h)-f(c)}{h}$

Defining the derivative of a function at a point

If $f(x)$ is continuous on some open interval, and c is a point in that interval,

- The average rate of change of f between $x=c$ and where $x=c+h$ is the slope of the secant line to the graph of f between the points where $x=c$ and where $x=c+h$
- slope of secant line $=\frac{f(c+h)-f(c)}{h}$
- We define the derivative of f when $x=c$ to be the limit of these slopes as h goes to 0 , if that limit exists:

Defining the derivative of a function at a point

If $f(x)$ is continuous on some open interval, and c is a point in that interval,

- The average rate of change of f between $x=c$ and where $x=c+h$ is the slope of the secant line to the graph of f between the points where $x=c$ and where $x=c+h$
- slope of secant line $=\frac{f(c+h)-f(c)}{h}$
- We define the derivative of f when $x=c$ to be the limit of these slopes as h goes to 0 , if that limit exists:
- $f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$

Defining the derivative of a function at a point

If $f(x)$ is continuous on some open interval, and c is a point in that interval,

- The average rate of change of f between $x=c$ and where $x=c+h$ is the slope of the secant line to the graph of f between the points where $x=c$ and where $x=c+h$
- slope of secant line $=\frac{f(c+h)-f(c)}{h}$
- We define the derivative of f when $x=c$ to be the limit of these slopes as h goes to 0 , if that limit exists:
- $f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$
- If $f^{\prime}(c)$ exists, we say that f is differentiable at c.

Defining the derivative of a function at a point

If $f(x)$ is continuous on some open interval, and c is a point in that interval,

- The average rate of change of f between $x=c$ and where $x=c+h$ is the slope of the secant line to the graph of f between the points where $x=c$ and where $x=c+h$
- slope of secant line $=\frac{f(c+h)-f(c)}{h}$
- We define the derivative of f when $x=c$ to be the limit of these slopes as h goes to 0 , if that limit exists:
- $f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$
- If $f^{\prime}(c)$ exists, we say that f is differentiable at c.
- If $f^{\prime}(c)$ exists at every point in the open interval, we say that f is differentiable on that interval.

Defining the tangent line to the graph of a function at a point

If $f(x)$ is differentiable at c,

- The tangent line to the graph of $f(x)$ at c is the line which passes through the point $(c, f(c))$ and has slope $f^{\prime}(c)$.

Defining the tangent line to the graph of a function at a point

If $f(x)$ is differentiable at c,

- The tangent line to the graph of $f(x)$ at c is the line which passes through the point $(c, f(c))$ and has slope $f^{\prime}(c)$.
- The tangent line at c has the equation $y=f^{\prime}(c)(x-c)+f(c)$

Defining the derivative as a function

If $f(x)$ is differentiable on some open interval,

- The derivative of f is the function $f^{\prime}(x)$ defined by

Defining the derivative as a function

If $f(x)$ is differentiable on some open interval,

- The derivative of f is the function $f^{\prime}(x)$ defined by
- $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

Defining the derivative as a function

If $f(x)$ is differentiable on some open interval,

- The derivative of f is the function $f^{\prime}(x)$ defined by
- $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
- There are some other notations used for the derivative function: if $y=f(x)$,

Defining the derivative as a function

If $f(x)$ is differentiable on some open interval,

- The derivative of f is the function $f^{\prime}(x)$ defined by
- $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
- There are some other notations used for the derivative function: if $y=f(x)$,
- $f^{\prime}(x)$ is also denoted by y^{\prime} or $\frac{\mathrm{d} f}{\mathrm{~d} x}$ or $\frac{\mathrm{d}}{\mathrm{d} x}(f)$ or $\frac{\mathrm{d}}{\mathrm{d} x}(y)$.

