1) Find the domain of each of the following 3) Solve the inequality, using the "Test point" method we learned in class and

a)
$$f(x) = x + 5x^3$$

$$(-\infty, \infty)$$

b)
$$f(x) = \sqrt{x+7}$$

 $x+77,0$
 $(x7,-7)$
domain $\left[-7,00\right)$

2) Solve the equation: |x+3| = 5

$$x+3=5$$
 or $x+3=-5$
 $x=2$ or $x=-8$

3) Solve the inequality, using the "Test point" method we learned in class and showing all work to justify your answer: leave numbers in the form of integers or fractions, not decimals. Give your answer as a graph, then in interval and inequality form.

 $|3x - 1| \ge 7$

$$|3x-1|=7$$
 $3x-1=7$

or

 $3x-1=-7$
 $3x=8$

or

 $x=-6$
 $x=\frac{8}{3}$

or

 $x=-2$

Test points: $\chi = -3$ $\chi = 0$ $\chi = 3$ $|3(3)-1|\stackrel{?}{>}7$ $|3(0)-1|\stackrel{?}{>}7$ $|3(3)-1|\stackrel{?}{>}7$ |8|77 $|-1|\stackrel{?}{>}7$ |9-1|=|8|77yes

4) For the function $f(x) = \sqrt{x-3}$, find the value of each of the following. Simplify your answers as much as possible but do not use decimals.

a)
$$f(7) = \sqrt{7-3} = \sqrt{4} = 2$$

b)
$$f(0) = \sqrt{0-3}$$
 is not real undefined

c)
$$f(3) = \sqrt{3-3} = \sqrt{\sigma} = 0$$

d)
$$f(a+h)$$

$$= \sqrt{a+h-3}$$

e)
$$f(a) = \sqrt{x-3}$$

f)
$$f(a+h) - f(a)$$

$$= \sqrt{a+h-3} - \sqrt{a-3}$$

g)
$$\frac{f(a+h)-f(a)}{h}$$

= $\sqrt{a+h-3} - \sqrt{a-3}$
 h

= $\sqrt{a+h-3}' - \sqrt{a-3}(\sqrt{a+h-3}' + \sqrt{a-3}')$

= $\frac{(a+h-3) - (a-3)}{h(\sqrt{a+h-3}' + \sqrt{a-3}')}$

= $\frac{h}{h(\sqrt{a+h-3}' + \sqrt{a-3})}$

5) Give the formula for the function g(x) whose graph is the same as the graph of $f(x) = \sqrt{x}$ but shifted to the left by 4 units and up by 2 units.