Please do not write in the margins of the page!

Part A: Use the "round-trip" theorem to check if the given functions are inverses: show all your work.

1) $f(x)=-x-4 ; g(x)=4-x$

Is $f \circ g(x)=x$?

$$
\begin{aligned}
f(g(x)) & =f(4-x) \\
& =-(4-x)-4 \\
& =-4+x-4=x-8 \neq x
\end{aligned}
$$

No they are not inverses. (You could also check to see if $g \circ f(x)=x$: it is not.)
2) $f(x)=2 x+3 ; g(x)=x-\frac{3}{2}$

Is $f \circ g(x)=x$?

$$
\begin{aligned}
f(g(x)) & =f\left(x-\frac{3}{2}\right) \\
& =2\left(x-\frac{3}{2}\right)+3 \\
& =2 x-2\left(\frac{3}{2}\right)+3 \\
& =2 x-3+3=2 x \neq x
\end{aligned}
$$

No, they are not inverses. (You could also check to see if $g \circ f(x)=x$: it is not.)
Part B: Is each of the functions whose graphs are given below one-to-one or not? Explain your answer.
a)

b)

a) Is it one-to-one? Why or why not?

No: for example, there is more than one input x that gives the output 2 (a horizontal line $y=2$ intersects the graph in 3 points).
b) Is it one-to-one? Why or why not?

Yes: every output comes from only one input (any horizontal line will intersect this graph in at most one point).

