Session 7: Inverse Functions

Definition: If $f(x)$ is a function which is one-to-one, we define the inverse of f to be the function $f^{-1}(x)$ such that

$$
y=f(x) \Longleftrightarrow f^{-1}(y)=x
$$

The domain of f is the range of its inverse, and the range of f is the domain of its inverse.

In other words: the inverse function to $f(x)$ reverses the roles of the input and output.

Example: Finding the rule (or formula) for the inverse function of $f(x)=3 x-2$
We first rewrite the equation for the rule of $f(x)$, using $y=f(x)$:

$$
y=3 x-2
$$

Now we change y to x and x to y in this equation:

$$
x=3 y-2
$$

And now solve for y :

$$
\begin{aligned}
& x=3 y-2 \\
& x+2=3 y \\
& \frac{x+2}{3}=y
\end{aligned}
$$

So the inverse function is $f^{-1}(x)=\frac{x+2}{3}$
Note: In the formula for $f(x)$, what operations do we do to $x ?$

What about the inverse function $f^{-1}(x)$?

Knowing the graph of $f(x)$, we can find the graph of its inverse function. Here is an example:

