Write in here your summary of each of the important transformations of functions and the effects they have on the graph of the function:

- Adding a number c to the output (Adding a number c to the value of the function):

Compared to the graph of $y=f(x)$, the graph of $y=f(x)+c$ is shifted up or down by c units, depending on whether c is positive or negative.

- Adding a number c to the input (Inputing $x+c$ in place of x):

Compared to the graph of $y=f(x)$, the graph of $y=f(x+c)$ is shifted to the left or to the right by c units, to the left if c is negative, to the right if c is positive.

- Multiplying the output by a positive number c (Multiplying the value of the function by a positive number c):

Compared to the graph of $y=f(x)$, the graph of $y=c \cdot f(x)$ is stretched or compressed vertically; stretched away from the x-axis if $c>1$, or compressed toward the x -axis if c is between 0 and 1.

- Multiplying the input by a positive number c (Inputing $c x$ in place of x):

Compared to the graph of $y=f(x)$, the graph of $y=f(c x)$ is stretched or compressed horizontally; compressed toward the \mathbf{y}-axis if $c>1$, or stretched away from the \mathbf{y}-axis if c is between 0 and 1.

- Multiplying the output by -1 (Multiplying the value of the function by -1):

Compared to the graph of $y=f(x)$, the graph of $y=-f(x)$ is reflected across the x-axis

- Multiplying the input by -1 (Inputing $-x$ in place of x):

Compared to the graph of $y=f(x)$, the graph of $y=f(-x)$ is reflected across the y-axis

Basic graphs: These are the simplest, most basic examples of these types of functions

- Absolute value function $y=|x|$

Domain: \mathbb{R}

Quaratic function $y=x^{2}$

Domain: \mathbb{R}

- Rational function $y=\frac{1}{x}$

Domain: $\mathbb{R} \backslash\{0\}$

- Cubic function $y=x^{3}$

Domain: \mathbb{R}

