# MAT 1375: Functions given by formulas 

Sybil Shaver

September 10, 2017

## Recall about functions, from section 2.2:

- A function connects an input to an output.


## Recall about functions, from section 2.2:

- A function connects an input to an output.
- The set of possible inputs to the function is called the domain.


## Recall about functions, from section 2.2:

- A function connects an input to an output.
- The set of possible inputs to the function is called the domain.
- The set of outputs that come from those inputs is called the range.


## Recall about functions, from section 2.2:

- A function connects an input to an output.
- The set of possible inputs to the function is called the domain.
- The set of outputs that come from those inputs is called the range.
- A function may be defined in any one of several ways.


## Recall about functions, from section 2.2:

- A function connects an input to an output.
- The set of possible inputs to the function is called the domain.
- The set of outputs that come from those inputs is called the range.
- A function may be defined in any one of several ways.
- It may be defined by giving all the values of inputs and their outputs (in a table, for example, or a mapping diagram)


## Recall about functions, from section 2.2:

- A function connects an input to an output.
- The set of possible inputs to the function is called the domain.
- The set of outputs that come from those inputs is called the range.
- A function may be defined in any one of several ways.
- It may be defined by giving all the values of inputs and their outputs (in a table, for example, or a mapping diagram)
- More commonly, it may be defined by a verbal description, a formula, or a graph.


## About the domain and range:

- For the next few sessions, we consider only functions whose inputs and outputs are real numbers.


## About the domain and range:

- For the next few sessions, we consider only functions whose inputs and outputs are real numbers.
- Sometimes we are told what the domain of the function is.


## About the domain and range:

- For the next few sessions, we consider only functions whose inputs and outputs are real numbers.
- Sometimes we are told what the domain of the function is.
- For functions which come from geometry or the real world, the domain may be determined by what the variables represent.


## About the domain and range:

- For the next few sessions, we consider only functions whose inputs and outputs are real numbers.
- Sometimes we are told what the domain of the function is.
- For functions which come from geometry or the real world, the domain may be determined by what the variables represent.
- Otherwise, we take the domain to be the largest possible set of real numbers for which the function is defined.


## About the domain and range:

- For the next few sessions, we consider only functions whose inputs and outputs are real numbers.
- Sometimes we are told what the domain of the function is.
- For functions which come from geometry or the real world, the domain may be determined by what the variables represent.
- Otherwise, we take the domain to be the largest possible set of real numbers for which the function is defined.
- That means in practice we must look for real numbers where the function is not defined!


## About the domain and range:

- For the next few sessions, we consider only functions whose inputs and outputs are real numbers.
- Sometimes we are told what the domain of the function is.
- For functions which come from geometry or the real world, the domain may be determined by what the variables represent.
- Otherwise, we take the domain to be the largest possible set of real numbers for which the function is defined.
- That means in practice we must look for real numbers where the function is not defined!
- So if the function is given by a formula, we ask what could possibly go wrong.

Functions given by formulas: Ex. 3.1a

- $f(x)=3 x+4$


## Functions given by formulas: Ex. 3.1a

- $f(x)=3 x+4$
- This is a linear function. It is an example of a polynomial function of first degree.


## Functions given by formulas: Ex. 3.1a

- $f(x)=3 x+4$
- This is a linear function. It is an example of a polynomial function of first degree.
- Compute $f(2), f(3), f(-1)$


## Functions given by formulas: Ex. 3.1a

- $f(x)=3 x+4$
- This is a linear function. It is an example of a polynomial function of first degree.
- Compute $f(2), f(3), f(-1)$
- No matter what real number we put in place of $x$ (not just those three numbers), we can compute $f(x)$. No problem.


## Functions given by formulas: Ex. 3.1a

- $f(x)=3 x+4$
- This is a linear function. It is an example of a polynomial function of first degree.
- Compute $f(2), f(3), f(-1)$
- No matter what real number we put in place of $x$ (not just those three numbers), we can compute $f(x)$. No problem.
- So the domain is the set of all real numbers, $\mathbb{R}$

Functions given by formulas: Ex. 3.1b

- $f(x)=\sqrt{x^{2}-3}$

Functions given by formulas: Ex. 3.1b

- $f(x)=\sqrt{x^{2}-3}$
- This is a radical function.

Functions given by formulas: Ex. 3.1b

- $f(x)=\sqrt{x^{2}-3}$
- This is a radical function.
- Compute $f(2), f(3), f(-1)$


## Functions given by formulas: Ex. 3.1b

- $f(x)=\sqrt{x^{2}-3}$
- This is a radical function.
- Compute $f(2), f(3), f(-1)$
- There is a problem here. If the radicand is negative, the output will not be a real number.


## Functions given by formulas: Ex. 3.1b

- $f(x)=\sqrt{x^{2}-3}$
- This is a radical function.
- Compute $f(2), f(3), f(-1)$
- There is a problem here. If the radicand is negative, the output will not be a real number.
- So we need the radicand to be non-negative:


## Functions given by formulas: Ex. 3.1b

- $f(x)=\sqrt{x^{2}-3}$
- This is a radical function.
- Compute $f(2), f(3), f(-1)$
- There is a problem here. If the radicand is negative, the output will not be a real number.
- So we need the radicand to be non-negative:
- For this function we need $x^{2}-3 \geq 0$. Solving this polynomial inequality will give the domain.

Functions given by formulas: Ex. 3.1c

- $f(x)= \begin{cases}5 x-6 & \text { for }-1 \leq x \leq 1 \\ x^{3}+2 x & \text { for } 1<x \leq 5\end{cases}$


## Functions given by formulas: Ex. 3.1c

- $f(x)= \begin{cases}5 x-6 & \text { for }-1 \leq x \leq 1 \\ x^{3}+2 x & \text { for } 1<x \leq 5\end{cases}$
- This is a piecewise-defined function. It is defined differently on different parts of its domain.


## Functions given by formulas: Ex. 3.1c

- $f(x)= \begin{cases}5 x-6 & \text { for }-1 \leq x \leq 1 \\ x^{3}+2 x & \text { for } 1<x \leq 5\end{cases}$
- This is a piecewise-defined function. It is defined differently on different parts of its domain.
- Compute $f(2), f(3), f(-1)$


## Functions given by formulas: Ex. 3.1c

- $f(x)= \begin{cases}5 x-6 & \text { for }-1 \leq x \leq 1 \\ x^{3}+2 x & \text { for } 1<x \leq 5\end{cases}$
- This is a piecewise-defined function. It is defined differently on different parts of its domain.
- Compute $f(2), f(3), f(-1)$
- Notice that the function is defined so that each input leads to exactly one output. The two parts of the domain do not overlap.


## Functions given by formulas: Ex. 3.1c

- $f(x)= \begin{cases}5 x-6 & \text { for }-1 \leq x \leq 1 \\ x^{3}+2 x & \text { for } 1<x \leq 5\end{cases}$
- This is a piecewise-defined function. It is defined differently on different parts of its domain.
- Compute $f(2), f(3), f(-1)$
- Notice that the function is defined so that each input leads to exactly one output. The two parts of the domain do not overlap.
- What is the domain of this function? Put the parts together. It may help to draw a graph.


## Functions given by formulas: Ex. 3.1c

- $f(x)= \begin{cases}5 x-6 & \text { for }-1 \leq x \leq 1 \\ x^{3}+2 x & \text { for } 1<x \leq 5\end{cases}$
- This is a piecewise-defined function. It is defined differently on different parts of its domain.
- Compute $f(2), f(3), f(-1)$
- Notice that the function is defined so that each input leads to exactly one output. The two parts of the domain do not overlap.
- What is the domain of this function? Put the parts together. It may help to draw a graph.
- The domain is the union of $[-1,1]$ and $(1,5]$, which is the whole interval $[-1,5]$.

Functions given by formulas: Ex. 3.1d

- $f(x)=\frac{x+2}{x+3}$

Functions given by formulas: Ex. 3.1d

- $f(x)=\frac{x+2}{x+3}$
- This is a rational function.

Functions given by formulas: Ex. 3.1d

- $f(x)=\frac{x+2}{x+3}$
- This is a rational function.
- Compute $f(2), f(3), f(-1)$


## Functions given by formulas: Ex. 3.1d

- $f(x)=\frac{x+2}{x+3}$
- This is a rational function.
- Compute $f(2), f(3), f(-1)$
- There is a problem here. If the denominator is 0 , the function is undefined. (Division by 0 is undefined.)
- So we need the denominator not to be 0 :


## Functions given by formulas: Ex. 3.1d

- $f(x)=\frac{x+2}{x+3}$
- This is a rational function.
- Compute $f(2), f(3), f(-1)$
- There is a problem here. If the denominator is 0 , the function is undefined. (Division by 0 is undefined.)
- So we need the denominator not to be 0 :
- We need $x+3 \neq 0$. Solving this inequality will give the domain: $x \neq-3$


## Functions given by formulas: Ex. 3.1d

- $f(x)=\frac{x+2}{x+3}$
- This is a rational function.
- Compute $f(2), f(3), f(-1)$
- There is a problem here. If the denominator is 0 , the function is undefined. (Division by 0 is undefined.)
- So we need the denominator not to be 0 :
- We need $x+3 \neq 0$. Solving this inequality will give the domain: $x \neq-3$
- We can write the domain as $\mathbb{R} \backslash\{-3\}$, which means "the set of all real numbers except -3 "

