# Logarithm Basics 

Sybil Shaver

May 17, 2017

## What is a logarithm?

- Notation: $\log _{b}(x)$ means "the logarithm to the base $b$ of $x$ ". But what is a logarithm?


## What is a logarithm?

- Notation: $\log _{b}(x)$ means "the logarithm to the base $b$ of $x$ ". But what is a logarithm?
- There is a close relationship between logarithms and exponents: $\log _{b}(x)=y$ means the same as $b^{y}=x$


## What is a logarithm?

- Notation: $\log _{b}(x)$ means "the logarithm to the base $b$ of $x$ ". But what is a logarithm?
- There is a close relationship between logarithms and exponents:
$\log _{b}(x)=y$ means the same as $b^{y}=x$
- $\log _{2}(8)=3$ means the same as $2^{3}=8$


## What is a logarithm?

- Notation: $\log _{b}(x)$ means "the logarithm to the base $b$ of $x$ ". But what is a logarithm?
- There is a close relationship between logarithms and exponents:
$\log _{b}(x)=y$ means the same as $b^{y}=x$
- $\log _{2}(8)=3$ means the same as $2^{3}=8$
- $\log _{5}(25)=2$ means the same as $5^{2}=25$


## What is a logarithm?

- Notation: $\log _{b}(x)$ means "the logarithm to the base $b$ of $x$ ". But what is a logarithm?
- There is a close relationship between logarithms and exponents:
$\log _{b}(x)=y$ means the same as $b^{y}=x$
- $\log _{2}(8)=3$ means the same as $2^{3}=8$
- $\log _{5}(25)=2$ means the same as $5^{2}=25$
- $\log _{3}\left(\frac{1}{3}\right)=-1$ means the same as $3^{-1}=\frac{1}{3}$


## Finding exact values of logarithms

Remember $\log _{b}(x)=y$ means the same as $b^{y}=x$ The logarithm is the exponent!

- What is $\log _{2}(32)$ ?


## Finding exact values of logarithms

Remember $\log _{b}(x)=y$ means the same as $b^{y}=x$ The logarithm is the exponent!

- What is $\log _{2}(32)$ ?
- Write 32 as a power of the base 2 : $32=2^{5}$


## Finding exact values of logarithms

Remember $\log _{b}(x)=y$ means the same as $b^{y}=x$
The logarithm is the exponent!

- What is $\log _{2}(32)$ ?
- Write 32 as a power of the base 2 : $32=2^{5}$
- So $\log _{2}(32)=5$
(The exponent that you put on the base 2 in order to get 32 )


## Finding exact values of logarithms part 2

Remember $\log _{b}(x)=y$ means the same as $b^{y}=x$ The logarithm is the exponent!

- What is $\log _{5}(125 \sqrt{5})$ ?


## Finding exact values of logarithms part 2

Remember $\log _{b}(x)=y$ means the same as $b^{y}=x$ The logarithm is the exponent!

- What is $\log _{5}(125 \sqrt{5})$ ?
- Write 125 and the square root as a power of the base 5: $125 \sqrt{5}=5^{3} \cdot 5^{1 / 2}$


## Finding exact values of logarithms part 2

Remember $\log _{b}(x)=y$ means the same as $b^{y}=x$ The logarithm is the exponent!

- What is $\log _{5}(125 \sqrt{5})$ ?
- Write 125 and the square root as a power of the base 5: $125 \sqrt{5}=5^{3} \cdot 5^{1 / 2}$
- Now use the "product of powers of the same base" rule: $5^{3} \cdot 5^{1 / 2}=5^{3+\frac{1}{2}}=5^{\frac{7}{2}}$


## Finding exact values of logarithms part 2

Remember $\log _{b}(x)=y$ means the same as $b^{y}=x$
The logarithm is the exponent!

- What is $\log _{5}(125 \sqrt{5})$ ?
- Write 125 and the square root as a power of the base 5: $125 \sqrt{5}=5^{3} \cdot 5^{1 / 2}$
- Now use the "product of powers of the same base" rule: $5^{3} \cdot 5^{1 / 2}=5^{3+\frac{1}{2}}=5^{\frac{7}{2}}$
- so $\log _{5}(125 \sqrt{5})=\frac{7}{2}$
(The exponent that you put on the base 5 in order to get $125 \sqrt{5}$ )

