Self-Test A:

1) Answer: $x=16, y=-37, z=9$; or $(16,-37,9)$

Section 3.6
2) $y=x^{2}-6 x+8$
a) $y=(x-3)^{2}-1$ so the vertex is $(3,-1)$
b) x-intercepts $(2,0)$ and $(4,0)$; y-intercept $(0,8)$
c)

sections 7.4-7.5
3) Partial solution (see section 9.1): Complete the square in y to put it in standard form (the square in x is already complete)
$x^{2}+(y-2)^{2}=9$
The center is $(0,2)$ and the radius is 3 .
4) $x=-1+\frac{\sqrt{30}}{3}$ or $x=-1-\frac{\sqrt{30}}{3}$
5) Solutions: $(3 \sqrt{2}, \sqrt{2}),(-3 \sqrt{2}, \sqrt{2}),(3 \sqrt{2},-\sqrt{2}),(-3 \sqrt{2},-\sqrt{2})$

Self-Test B: allow 50 minutes.

1) $y=2 x^{2}+6 x$
a) $y=2\left(x+\frac{3}{2}\right)^{2}-\frac{9}{2}$ so the vertex is $\left(-\frac{3}{2},-\frac{9}{2}\right)$
b) x -intercepts $(0,0)$ and $(-3,0)$; y -intercept $(0,0)$
c)

2) $y=-x^{2}-8 x+1$
a) $y=-(x+4)^{2}+17$ so the vertex is $(-4,17)$
b) x-intercepts $(-4 \pm \sqrt{17}, 0)$; y-intercept $(0,1)$
c)

3) Let $(0,4)$ be the center of a circle that passes through the point $(-2,5)$. (Section 9.1)
a) The radius is the distance between the center and a point on the circle. $r=\sqrt{(0-(-2))^{2}+(4-5)^{2}}=$ $\sqrt{5}$
b) $x^{2}+(y+2)^{2}=5$
4) $x=-2 \pm i \sqrt{5}$
5) Solutions: $(1,1),(-2,7)$
