The references to examples in the textbook are given as well: review as needed before you repeat the self-test. The test could include any of the similar homework problems from these sections: it will NOT just change the numbers in these problems.
NOTE: Please DO NOT use set notation when reporting your solutions to equations: just write the solutions as I have done below.

Self-Test:

Part A:

1) $x^{\frac{5}{3}}$

Section 6.2 Example 4
2) $\frac{1}{125}$

Section 6.2 Example 3
3) $24 \sqrt{10}$

Section 6.5 Example 1
4) Use the perfect square of a binomial pattern: $(A-B)^{2}=A^{2}-2 A B+B^{2}$

Answer (after simplifying): $43-30 \sqrt{2}$
Section 6.5 Example 6
5) Use the difference of squares pattern: $(A-B)(A+B)=A^{2}-B^{2}$

Answer (after simplifying): 17
Section 6.5 Example 7
In \#6-7: Rationalize the denominator and simplify: use the difference of squares pattern where appropriate
6) $\frac{2 \sqrt{7}+2}{3}$ or, better, $\frac{2+2 \sqrt{7}}{3}$

Section 6.6 Example 7
7) $\frac{3 \sqrt{5}-2 \sqrt{3}}{11}$

Section 6.6 Example 7

Part B:

8) Solution: $x=2$

Section 6.7 Examples 1, 4
9) $y=-\frac{99}{14}$

Section 6.7 Examples 1, 4

Part C:

10) $-16+8 i$

Section 6.8 Example 5
11) $-32+4 i$

Section 6.8 Example 6
12) $\frac{10}{13}+\frac{15}{13} i$

Section 6.8 Example 7

Part D:

13) $x(x-17)=0$

Solution: (after some work) $x=0$ or $x=17$
Section 7.1 Examples 3, 4: Make sure that you are using this method!
14) First solve it for x^{2} : you should get (after a bit of work)
$x^{2}=-24$
Then use the square root property and simplify: the final result is $x= \pm 2 i \sqrt{6}$
Section 7.1 Examples 1, 2, 3: make sure that you are using this method!

