Rationalize the denominators and simplify. Write complex numbers in the standard form $a+b i$

1) One way, rationalizing the denominator first and then simplifying:

$$
\begin{aligned}
\frac{15}{\sqrt{27}} & =\frac{15}{\sqrt{27}} \cdot \frac{\sqrt{27}}{\sqrt{27}} \\
& =\frac{15 \sqrt{27}}{(\sqrt{27})^{2}} \\
& =\frac{15 \sqrt{27}}{27} \\
& =\frac{5 \sqrt{27}}{9} \\
& =\frac{5 \sqrt{9 \cdot 3}}{9} \\
& =\frac{5 \cdot 3 \sqrt{3}}{9} \\
& =\frac{5 \sqrt{3}}{3}
\end{aligned}
$$

Another way, simplifying the denominator first:

$$
\begin{aligned}
\frac{15}{\sqrt{27}} & =\frac{15}{\sqrt{9 \cdot 3}}=\frac{15}{3 \sqrt{3}} \\
& =\frac{5}{3 \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \\
& =\frac{5 \sqrt{3}}{(\sqrt{3})^{2}} \\
& =\frac{5 \sqrt{3}}{3} \text { because }(\sqrt{3})^{2}=3: \text { that is the definition of the square root! }
\end{aligned}
$$

2) Multiply top and bottom by the conjugate of the denominator:

$$
\begin{aligned}
\frac{72}{\sqrt{13}-2} & =\frac{72}{(\sqrt{13}-2)} \cdot \frac{(\sqrt{13}+2)}{(\sqrt{13}+2)} \\
& =\frac{72(\sqrt{13}-2)}{(\sqrt{13})^{2}-2^{2}} \text { using the pattern for the product of conjugates } \\
& =\frac{72(\sqrt{13}-2)}{13-4} \\
& =\frac{72(\sqrt{13}-2)}{9} \\
& =8(\sqrt{13}-2) \\
& =8 \sqrt{13}-16
\end{aligned}
$$

3) Multiply top and bottom by the conjugate of the denominator, and remember that $i^{2}=-1$:

$$
\begin{aligned}
\frac{-1+6 i}{8-6 i} & =\frac{(-1+6 i)}{(8-6 i)} \cdot \frac{(8+6 i)}{(8+6 i)} \\
& =\frac{-8+6 i+48 i-36 i^{2}}{8^{2}-(6 i)^{2}} \\
& =\frac{-8+54 i-36(-1)}{8^{2}-36 i^{2}} \\
& =\frac{-8+54 i+36}{64-36(-1)} \\
& =\frac{28+54 i}{64+36} \\
& =\frac{28+54 i}{100} \\
& =\frac{28}{100}+\frac{54}{100} i \\
& =\frac{7}{25}+\frac{27}{50} i
\end{aligned}
$$

4) Find two angles, one positive and one negative, which are coterminal with $\frac{2 \pi}{3}$. You must show or explain how you got your answers! Do all your work in radians only.

There are infinitely many possible correct answers to this - do you understand why?

You can get a coterminal angle by making a full rotation around the circle one or more times, in either the positive (counterclockwise) direction, or the negative (clockwise) direction, and then returning to the terminal side of $\frac{2 \pi}{3}$. Each full rotation either adds 2π to the original angle $\frac{2 \pi}{3}$, if the rotation is positive, or subtracts 2π, if the rotation is negative. So here are some possibilities: draw them and make sure that you understand what we are doing here!

Positive angles which are coterminal with $\frac{2 \pi}{3}$:
$\frac{2 \pi}{3}+2 \pi=\frac{2 \pi}{3}+\frac{6 \pi}{3}=\frac{8 \pi}{3}$
$\frac{2 \pi}{3}+2(2 \pi)=\frac{2 \pi}{3}+4 \pi=\frac{2 \pi}{3}+\frac{12 \pi}{3}=\frac{14 \pi}{3}$
$\frac{2 \pi}{3}+3(2 \pi)=\frac{2 \pi}{3}+6 \pi=\frac{2 \pi}{3}+\frac{18 \pi}{3}=\frac{20 \pi}{3}$
$\frac{2 \pi}{3}+4(2 \pi)=\frac{2 \pi}{3}+8 \pi=\frac{2 \pi}{3}+\frac{24 \pi}{3}=\frac{26 \pi}{3}$
... and so on ...

Negative angles which are coterminal with $\frac{2 \pi}{3}$:
$\frac{2 \pi}{3}-2 \pi=\frac{2 \pi}{3}-\frac{6 \pi}{3}=-\frac{4 \pi}{3}$
$\frac{2 \pi}{3}-2(2 \pi)=\frac{2 \pi}{3}-4 \pi=\frac{2 \pi}{3}-\frac{12 \pi}{3}=-\frac{10 \pi}{3}$
$\frac{2 \pi}{3}-3(2 \pi)=\frac{2 \pi}{3}-6 \pi=\frac{2 \pi}{3}-\frac{18 \pi}{3}=-\frac{16 \pi}{3}$
$\frac{2 \pi}{3}-4(2 \pi)=\frac{2 \pi}{3}-8 \pi=\frac{2 \pi}{3}-\frac{24 \pi}{3}=-\frac{22 \pi}{3}$
... and so on ...

