In these problems, do not use decimals in your answers: only use fractions or radicals in fully simplified form. Write complex numbers in the form $a+b i$
1a) Find the equation of the line which passes through the points $(2,-3)$ and $(0,1)$. Put it in slopeintercept form.
The slope of this line is $\frac{\text { rise }}{\text { run }}=\frac{\Delta y}{\Delta x}=\frac{1-(-3)}{0-2}=\frac{4}{-2}=-2$
So we know that the equation of the line has the form $y=-2 x+b$, and from the information given in the problem the y -intercept is the point $(0,1)$.
The equation of the line is $y=-2 x+1$
1b) Find the equation of the line parallel to the line in part (a), which passes through the point $(2,-2)$. Put it in slope-intercept form.
This line has the same slope as the line in part (a), namely, -2 . So its equation has the form $y=-2 x+b$. This time we have not been given the y-intercept, so we use the fact that $(2,-2)$ is a point on the line to find b :
$-2=-2(2)+b$
$-2=-4+b$
$2=b$
So the equation of the line is $y=-2 x+2$
1c) Find the equation of the line perpendicular to the line in part (a), which passes through the point $(-3,-1)$. Put it in slope-intercept form.
The slope of the perpendicular line is the negative reciprocal of -2 , which is $-\frac{1}{-2}=\frac{1}{2}$
So the equation of this line has the form $y=\frac{1}{2} x+b$, qand we use the given point to find b.
$-1=\frac{1}{2}(-3)+b$
$-1=-\frac{3}{2}+b$
$-1+\frac{3}{2}=b$
$-\frac{1}{2}=b$
So the equation of this line is $y=\frac{1}{2} x-\frac{1}{2}$
2) Solve the system of equations. Indicate your final answer clearly, and check your answer.

$$
\begin{aligned}
x-y-2 z & =-2 \\
2 x-3 y-3 z & =-1 \\
-2 x-y+z & =-5
\end{aligned}
$$

There are many ways to solve this system, but in all of the efficient ways we follow the same strategy: Use any two equations to eliminate one of the variables
Use a different pair of equations to eliminate the same variable
Solve the resulting 2 by 2 system
Substitute back into one of the original equations to find the third variable (the one eliminated in the first step)

Here is one way:
Use the first and second equations to eliminate x :

$$
\left.\begin{array}{rl}
-2(x-y-2 z) & =-2(-2) \\
2 x-3 y-3 z & =-1
\end{array}\right\} \quad \begin{aligned}
-2 x+2 y+4 z & =4 \\
2 x-3 y-3 z & =-1 \\
-y+z & =3
\end{aligned}
$$

Now use the first and third equations to eliminate x again:

$$
\left.\begin{array}{r}
2(x-y-2 z)=2(-2) \\
-2 x-y+z=-5
\end{array}\right\} \quad \begin{array}{r}
2 x-2 y-4 z=-4 \\
-2 x-y+z=-5 \\
-3 y-3 z=-9
\end{array}
$$

That result can be divided on both sides by -3 :
$\frac{-3 y}{-3}+\frac{-3 z}{-3}=\frac{-9}{-3}$
$y+z=3$

Now we have a 2 by 2 system:
$-y+z=3$
$y+z=3$
Add those equations together to eliminate y and we get $2 z=6 \Longrightarrow z=3$
Substitute back into one of the equations in the 2 by 2 system to find y : I will use the second equation $y+3=3 \Longrightarrow y=0$
Now choose one of the equations in the original 3 by 3 system to find x : I will use the first one
$x-0-2(3)=-2$
$x-6=-2$
$x=4$

The solution to the 3 by 3 system is ($4,0,3$)
3) Factor $49 x^{12}+14 x^{8}=7 x^{8}\left(7 x^{4}+2\right)$
4) Factor $42 A B-35 A-30 B+25$

Do this by grouping:
$42 A B-35 A-30 B+25$
$=7 A(6 B-5)-5(6 B-5)$
$=(7 A-5)(6 B-5)$
5) Use the AC method to factor $5 x^{2}-21 x+4$

We want two numbers whose product is 20 and whose sum is -21 : they are -20 and -1 . Use them to split the middle term
$5 x^{2}-21 x+4$
$=5 x^{2}-20 x-1 x+4$
Factor by grouping:
$=5 x(x-4)-1(x-4)$
$=(5 x-1)(x-4)$
6) Factor $x^{2}-81 y^{6}$

This is a difference of squares:
$x^{2}-81 y^{6}=x^{2}-\left(9 y^{3}\right)^{2}=\left(x-9 y^{3}\right)\left(x+9 y^{3}\right)$
7) Solve by using the Zero Product Property:
$x^{2}+x-20=0$
$(x+5)(x-4)=0$
$\Longrightarrow x+5=0$ or $x-4=0$ (the Zero Product Property)
$x+5=0 \Longrightarrow x=-5$
$x-4=0 \Longrightarrow x=4$
So $x=-5$ or $x=4$ (answer)
If you want to write your answer as a solution set, write $\{-5,4\}$, or you can write $x \epsilon\{-5,4\}$. The symbol ϵ means that x is one of the numbers in the set: in more formal language, we say " x is an element of the set $\{-5,4\}$ "
But whatever you do, make sure you've used the notation correctly and never write that x equals the set, that is WRONG. It's better to avoid writing in set language if you don't totally understand what it means.
8) Solve by using the Square Root Property:
$x^{2}=16$
$\Longrightarrow x= \pm \sqrt{16}$ (the Square Root Property)
$x= \pm 4$ (answer), or you can write: $x=4$ or $x=-4$
If you want to write your answer as a solution set, write $\{4,-4\}$, or you can write $x \in\{4,-4\}$
9) Solve by using the Square Root Property: do not use decimal approximations in your answer.
$\left(x-\frac{3}{7}\right)^{2}=\frac{16}{49}$
$\left(x-\frac{3}{7}\right)= \pm \sqrt{\frac{16}{49}}$ (the Square Root Property)
$\left(x-\frac{3}{7}\right)= \pm \frac{4}{7}$
$x=\frac{3}{7} \pm \frac{4}{7}$
Now we have to split into two equations in order to finish simplifying:
$x=\frac{3}{7}+\frac{4}{7}=\frac{7}{7}=1$
or
$x=\frac{3}{7}-\frac{4}{7}=-\frac{1}{7}$
Answer: $x=1$ or $x=-\frac{1}{7}$
If you want to write your answer as a solution set, write $\left\{1,-\frac{1}{7}\right\}$, or you can write $x \in\left\{1,-\frac{1}{7}\right\}$

