In these problems, do not use decimals in your answers: only use fractions or radicals in fully simplified form. Write complex numbers in the form $a+b i$

1a) Find the equation of the line which passes through the points $(-2,1)$ and $(0,-3)$. Put it in slopeintercept form.
The slope of this line is $\frac{\text { rise }}{\text { run }}=\frac{\Delta y}{\Delta x}=\frac{-3-1}{0-(-2)}=\frac{-4}{2}=-2$
So we know that the equation of the line has the form $y=-2 x+b$, and from the information given in the problem the y -intercept is the point $(0,-3)$.
The equation of the line is $y=-2 x-3$
$1 b)$ Find the equation of the line parallel to the line in part (a), which passes through the point $(1,1)$. Put it in slope-intercept form.
This line has the same slope as the line in part (a), namely, -2 . So its equation has the form $y=-2 x+b$. This time we have not been given the y-intercept, so we use the fact that $(1,1)$ is a point on the line to find b :
$1=-2(1)+b$
$1=-2+b$
$3=b$
So the equation of the line is $y=-2 x+3$
1c) Find the equation of the line perpendicular to the line in part (a), which passes through the point $(2,3)$. Put it in slope-intercept form.
The slope of the perpendicular line is the negative reciprocal of -2 , which is $-\frac{1}{-2}=\frac{1}{2}$
So the equation of this line has the form $y=\frac{1}{2} x+b$, qand we use the given point to find b.
$3=\frac{1}{2}(2)+b$
$3=1+b$
$2=b$
So the equation of this line is $y=\frac{1}{2} x+2$
2) Solve the system of equations. Indicate your final answer clearly, and check your answer.

$$
\begin{aligned}
-x+y+2 z & =2 \\
x+y+3 z & =17 \\
-3 x-y+z & =-7
\end{aligned}
$$

There are many ways to solve this system, but in all of the efficient ways we follow the same strategy: Use any two equations to eliminate one of the variables
Use a different pair of equations to eliminate the same variable
Solve the resulting 2 by 2 system
Substitute back into one of the original equations to find the third variable (the one eliminated in the first step)

Here is one way: it's a good idea to think about why I made the particular choices I did Use the first and second equations to eliminate x :

$$
\begin{aligned}
-x+y+2 z & =2 \\
x+y+3 z & =17 \\
\hline 2 y+5 z & =19
\end{aligned}
$$

Now use the second and third equations to eliminate x again:

$$
\left.\begin{array}{r}
3(x+y+3 z)=3(17) \\
-3 x-y+z=-7
\end{array}\right\} \quad \begin{aligned}
& 3 x+3 y+9 z=51 \\
& -3 x-y+z=-7 \\
& \frac{2 y+10 z=44}{}
\end{aligned}
$$

Now we have a 2 by 2 system:
$2 y+5 z=19$
$2 y+10 z=44$
Subtract the first of those equations from the second to eliminate y :

$$
\left.\begin{array}{rl}
2 y+10 z & =44 \\
-(2 y+5 z) & =-19)
\end{array}\right\} \quad \begin{aligned}
2 y+10 z & =44 \\
-2 y-5 z & =-19 \\
& 5 z=25
\end{aligned}
$$

and we get $5 z=25 \Longrightarrow z=5$
Substitute back into one of the equations in the 2 by 2 system to find y : I will use the second equation $2 y+10(5)=44 \Longrightarrow 2 y+50=44 \Longrightarrow 2 y=-6 \Longrightarrow y=-3$
Now choose one of the equations in the original 3 by 3 system to find x : I will use the second one
$x+(-3)+3(5)=17$
$x-3+15=17$
$x+12=17$
$x=5$

The solution to the 3 by 3 system is ($5,-3,5$)
3) Factor $9 x^{6}+12 x^{8}=3 x^{6}\left(3+4 x^{2}\right)$
4) Factor $35 A B+21 A+25 B+15$

Do this by grouping:
$35 A B+21 A+25 B+15$
$=7 A(5 B+3)+5(5 B+3)$
$=(7 A+5)(5 B+3)$
5) Use the AC method to factor $5 x^{2}-19 x-30$

We want two numbers whose product is -150 and whose sum is -19 : they are -25 and 6 . Use them to split the middle term
$5 x^{2}-19 x-30$
$=5 x^{2}-25 x+6 x-30$
Factor by grouping:
$=5 x(x-5)+6(x-5)$
$=(5 x+6)(x-5)$
6) Factor $16 x^{2}-y^{6}$

This is a difference of squares:
$16 x^{2}-y^{6}=(4 x)^{2}-\left(y^{3}\right)^{2}=\left(4 x-y^{3}\right)\left(4 x+y^{3}\right)$
7) Solve by using the Zero Product Property:
$x^{2}-x-20=0$
$(x-5)(x+4)=0$
$\Longrightarrow x-5=0$ or $x+4=0$ (the Zero Product Property)
$x-5=0 \Longrightarrow x=5$
$x+4=0 \Longrightarrow x=-4$
So $x=5$ or $x=-4$ (answer)
If you want to write your answer as a solution set, write $\{5,-4\}$, or you can write $x \epsilon\{5,-4\}$. The symbol ϵ means that x is one of the numbers in the set: in more formal language, we say " x is an element of the set $\{5,-4\}$ "
But whatever you do, make sure you've used the notation correctly and never write that x equals the set, that is WRONG. It's better to avoid writing in set language if you don't totally understand what it means.
8) Solve by using the Square Root Property:
$x^{2}=49$
$\Longrightarrow x= \pm \sqrt{49}$ (the Square Root Property)
$x= \pm 7$ (answer), or you can write: $x=7$ or $x=-7$
If you want to write your answer as a solution set, write $\{7,-7\}$, or you can write $x \epsilon\{7,-7\}$
9) Solve by using the Square Root Property: do not use decimal approximations in your answer.
$\left(x-\frac{3}{7}\right)^{2}=\frac{16}{49}$
$\left(x-\frac{3}{7}\right)= \pm \sqrt{\frac{16}{49}}$ (the Square Root Property)
$\left(x-\frac{3}{7}\right)= \pm \frac{4}{7}$
$x=\frac{3}{7} \pm \frac{4}{7}$
Now we have to split into two equations in order to finish simplifying:
$x=\frac{3}{7}+\frac{4}{7}=\frac{7}{7}=1$
or
$x=\frac{3}{7}-\frac{4}{7}=-\frac{1}{7}$
Answer: $x=1$ or $x=-\frac{1}{7}$
If you want to write your answer as a solution set, write $\left\{1,-\frac{1}{7}\right\}$, or you can write $x \in\left\{1,-\frac{1}{7}\right\}$

