Definition; natural number exponents $b^{n}=\underbrace{b \cdot b \cdots b}$

> n factors
[Note: $b^{1}=b$, only one "factor".]
Product of powers of the same base:
$b^{n} \cdot b^{m}=b^{n+m}$
add the powers
Quotient of powers of the same base:
$\frac{b^{n}}{b^{m}}=b^{n-m}$
subtract the powers - top minus bottom
Definition of 0 power:
For any real number $b, b \neq 0$,
$b^{0}=1$
Note: 0^{0} is undefined; in fact it is indefinite.

Definition of negative integer powers:

For any real number $b, b \neq 0$, and any natural number n,
$b^{-n}=\frac{1}{b^{n}}$
Note: 0^{-n} is undefined because it would put 0 in the denominator.
Power to a power
$\left(b^{n}\right)^{m}=b^{n m}$
multiply the powers
Product to a power
$(a b)^{n}=a^{n} b^{n}$
the power distributes over the product
Quotient to a power
$\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$
the power distributes over the quotient
Negative exponents in the denominator
$\frac{1}{b^{-n}}=b^{n}$
a negative exponent in the denominator means the same as a positive exponent in the numerator.

Note: putting this together with the definition $b^{-n}=\frac{1}{b^{n}}$ means we can always turn negative exponents into positive ones!

Negative powers and reciprocals

$\left(\frac{a}{b}\right)^{-1}=\frac{b}{a}$
The -1 power is just a way of telling you to take the reciprocal.

Also: $\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}$
The $-n$ power is the n-th power of the reciprocal.

Definition of rational number powers with numerator 1:

For any real number b, and any natural number n,
$b^{1 / n}=\sqrt[n]{b}$
If n is even we also require that $b \geq 0$ so the root is a real number.

Definition of rational number powers:

For any real number b, and any natural numbers m and n, $b^{m / n}=\sqrt[n]{b^{m}}$
or
$b^{m / n}=(\sqrt[n]{b})^{m}$
If n is even we also require that $b \geq 0$ so the root is a real number.
It does not matter which order the root and power are taken in.

