Completing the square to put the equation of a parabola into vertex form

Sybil Shaver

April 24, 2017

Simple Example: when the leading coefficient is 1

- $y=x^{2}-6 x+5$

Simple Example: when the leading coefficient is 1

- $y=x^{2}-6 x+5$
- We first move the constant term to the other side so only terms with x in them remain on the right-hand side:

$$
y-5=x^{2}-6 x
$$

Simple Example: when the leading coefficient is 1

- $y=x^{2}-6 x+5$
- We first move the constant term to the other side so only terms with x in them remain on the right-hand side:
$y-5=x^{2}-6 x$
- Now complete the square on the right-hand side, and add the same number on the left:
$y-5+9=x^{2}-6 x+9$

Simple Example: when the leading coefficient is 1

- $y=x^{2}-6 x+5$
- We first move the constant term to the other side so only terms with x in them remain on the right-hand side:
$y-5=x^{2}-6 x$
- Now complete the square on the right-hand side, and add the same number on the left:
$y-5+9=x^{2}-6 x+9$
- Factor the perfect square trinomial, and simplify the left-hand side:

$$
y+4=(x-3)^{2}
$$

Simple Example: when the leading coefficient is 1

- $y=x^{2}-6 x+5$
- We first move the constant term to the other side so only terms with x in them remain on the right-hand side:
$y-5=x^{2}-6 x$
- Now complete the square on the right-hand side, and add the same number on the left:
$y-5+9=x^{2}-6 x+9$
- Factor the perfect square trinomial, and simplify the left-hand side:

$$
y+4=(x-3)^{2}
$$

- Finally move the constant term back to the right-hand side:
$y=(x-3)^{2}-4$

Not-so-simple Example: when the leading coefficient is not 1

- $y=3 x^{2}+9 x+4$

Not-so-simple Example: when the leading coefficient is not 1

- $y=3 x^{2}+9 x+4$
- We first move the constant term to the other side:
$y-4=3 x^{2}+9 x$

Not-so-simple Example: when the leading coefficient is not 1

- $y=3 x^{2}+9 x+4$
- We first move the constant term to the other side:

$$
y-4=3 x^{2}+9 x
$$

- Now divide each term on both sides by the leading coefficient: $\frac{y}{3}-\frac{4}{3}=\frac{3 x^{2}}{3}+\frac{9 x}{3}$

Not-so-simple Example: when the leading coefficient is not 1

- $y=3 x^{2}+9 x+4$
- We first move the constant term to the other side:

$$
y-4=3 x^{2}+9 x
$$

- Now divide each term on both sides by the leading coefficient: $\frac{y}{3}-\frac{4}{3}=\frac{3 x^{2}}{3}+\frac{9 x}{3}$
- Simplify:

$$
\frac{y}{3}-\frac{4}{3}=x^{2}+3 x
$$

Not-so-simple Example: when the leading coefficient is not 1

- $y=3 x^{2}+9 x+4$
- We first move the constant term to the other side:

$$
y-4=3 x^{2}+9 x
$$

- Now divide each term on both sides by the leading coefficient: $\frac{y}{3}-\frac{4}{3}=\frac{3 x^{2}}{3}+\frac{9 x}{3}$
- Simplify:

$$
\frac{y}{3}-\frac{4}{3}=x^{2}+3 x
$$

- Now complete the square on the right-hand side, and add the same number on the left:

$$
\frac{y}{3}-\frac{4}{3}+\frac{9}{4}=x^{2}+3 x+\frac{9}{4}
$$

Not-so-simple Example: when the leading coefficient is not 1

- $y=3 x^{2}+9 x+4$
- We first move the constant term to the other side:

$$
y-4=3 x^{2}+9 x
$$

- Now divide each term on both sides by the leading coefficient:

$$
\frac{y}{3}-\frac{4}{3}=\frac{3 x^{2}}{3}+\frac{9 x}{3}
$$

- Simplify:

$$
\frac{y}{3}-\frac{4}{3}=x^{2}+3 x
$$

- Now complete the square on the right-hand side, and add the same number on the left:

$$
\frac{y}{3}-\frac{4}{3}+\frac{9}{4}=x^{2}+3 x+\frac{9}{4}
$$

- Factor the perfect square trinomial, and simplify the left-hand side:

$$
\frac{y}{3}+\frac{11}{12}=\left(x+\frac{3}{2}\right)^{2}
$$

Not-so-simple Example: when the leading coefficient is not 1

- $y=3 x^{2}+9 x+4$
- We first move the constant term to the other side:

$$
y-4=3 x^{2}+9 x
$$

- Now divide each term on both sides by the leading coefficient:

$$
\frac{y}{3}-\frac{4}{3}=\frac{3 x^{2}}{3}+\frac{9 x}{3}
$$

- Simplify:

$$
\frac{y}{3}-\frac{4}{3}=x^{2}+3 x
$$

- Now complete the square on the right-hand side, and add the same number on the left:

$$
\frac{y}{3}-\frac{4}{3}+\frac{9}{4}=x^{2}+3 x+\frac{9}{4}
$$

- Factor the perfect square trinomial, and simplify the left-hand side:

$$
\frac{y}{3}+\frac{11}{12}=\left(x+\frac{3}{2}\right)^{2}
$$

- Move the constant term back to the right-hand side:

$$
\frac{y}{3}=\left(x+\frac{3}{2}\right)^{2}-\frac{11}{12}
$$

Not-so-simple Example: when the leading coefficient is not 1

- $y=3 x^{2}+9 x+4$
- We first move the constant term to the other side:

$$
y-4=3 x^{2}+9 x
$$

- Now divide each term on both sides by the leading coefficient:

$$
\frac{y}{3}-\frac{4}{3}=\frac{3 x^{2}}{3}+\frac{9 x}{3}
$$

- Simplify:

$$
\frac{y}{3}-\frac{4}{3}=x^{2}+3 x
$$

- Now complete the square on the right-hand side, and add the same number on the left:

$$
\frac{y}{3}-\frac{4}{3}+\frac{9}{4}=x^{2}+3 x+\frac{9}{4}
$$

- Factor the perfect square trinomial, and simplify the left-hand side:

$$
\frac{y}{3}+\frac{11}{12}=\left(x+\frac{3}{2}\right)^{2}
$$

- Move the constant term back to the right-hand side:

$$
\frac{y}{3}=\left(x+\frac{3}{2}\right)^{2}-\frac{11}{12}
$$

- Multiply both sides by 3 to get y all by itself:

Not-so-simple Example: when the leading coefficient is not 1

- $y=3 x^{2}+9 x+4$
- We first move the constant term to the other side:

$$
y-4=3 x^{2}+9 x
$$

- Now divide each term on both sides by the leading coefficient:

$$
\frac{y}{3}-\frac{4}{3}=\frac{3 x^{2}}{3}+\frac{9 x}{3}
$$

- Simplify:

$$
\frac{y}{3}-\frac{4}{3}=x^{2}+3 x
$$

- Now complete the square on the right-hand side, and add the same number on the left:

$$
\frac{y}{3}-\frac{4}{3}+\frac{9}{4}=x^{2}+3 x+\frac{9}{4}
$$

- Factor the perfect square trinomial, and simplify the left-hand side:

$$
\frac{y}{3}+\frac{11}{12}=\left(x+\frac{3}{2}\right)^{2}
$$

- Move the constant term back to the right-hand side:

$$
\frac{y}{3}=\left(x+\frac{3}{2}\right)^{2}-\frac{11}{12}
$$

- Multiply both sides by 3 to get y all by itself:

