Section 7.1: Completing the square to solve quadratic equations

Square root property:	Perfect square patterns:
If $x^2 = a$ then $x = \pm \sqrt{a}$	$(x+b)^2 = x^2 + 2bx + b^2$
So if $(x+b)^2 = a$ then $x+b = \pm \sqrt{a}$	$(x-b)^2 = x^2 - 2bx + b^2$

Examples

1) Solve for $x: x^2 + 6x - 3 = 0$

The left-hand side cannot be factored. We will rewrite this equation so that the left-hand side has the form of a perfect square trinomial:

Move the constant term to the other side (add 3 to both sides) and leave space on the left to add something: $r^2 \perp 6r \perp ($ $) - 3 \perp$

$$x + 0x + (\checkmark) = 3 + \checkmark$$

Find half of the coefficient of x, and square it: add that square to both sides above.

This makes the left-hand side have the form of a perfect square:

$$(x + \mathbf{y})^2 = \mathbf{y}$$

Solve using the square root property:

2) Solve for x: $x^2 + 5x - 2 = 0$

The left-hand side cannot be factored. We will rewrite this equation so that the left-hand side has the form of a perfect square trinomial:

Move the constant term to the other side (add 2 to both sides) and leave space on the left to add something: $x^2 + 5x + (\underbrace{)} = 2 + \underbrace{)}$ Find half of the coefficient of x, and square it: add that square to both sides above.

This makes the left-hand side have the form of a perfect square:

$$(x + \underline{})^2 = \underline{}$$

Solve using the square root property:

3) Solve for $x: 3x^2 - 8x + 7 = 0$

The left-hand side cannot be factored. We will rewrite this equation so that the left-hand side has the form of a perfect square trinomial:

Move the constant term to the other side (subtract 7 from both sides)

 $3x^2 - 8x + = -7$

Since the leading coefficient is not 1, we will divide both sides by that number before completing the square: $\frac{3x^2}{3x^2} = \frac{8x}{3x^2} = \frac{-7}{3x^2}$

Simplify, and leave space to add something on the left-hand side:

Find half of the coefficient of x, and square it: add that square to both sides above.

This makes the left-hand side have the form of a perfect square:

 $(x + \underline{)}^2 = \underline{}$ Solve using the square root property: