\qquad
-

Section 7.1: Completing the square to solve quadratic equations

Square root property:	Perfect square patterns:
If $x^{2}=a$ then $x= \pm \sqrt{a}$	$(x+b)^{2}=x^{2}+2 b x+b^{2}$
So if $(x+b)^{2}=a$ then $x+b= \pm \sqrt{a}$	$(x-b)^{2}=x^{2}-2 b x+b^{2}$

Examples

1) Solve for $x: x^{2}+6 x-3=0$

The left-hand side cannot be factored. We will rewrite this equation so that the left-hand side has the form of a perfect square trinomial:
Move the constant term to the other side (add 3 to both sides) and leave space on the left to add something:

Find half of the coefficient of x, and square it: add that square to both sides above.
This makes the left-hand side have the form of a perfect square:
$(x+\underbrace{})^{2}=\underbrace{}$
Solve using the square root property:
2) Solve for x : $x^{2}+5 x-2=0$

The left-hand side cannot be factored. We will rewrite this equation so that the left-hand side has the form of a perfect square trinomial:
Move the constant term to the other side (add 2 to both sides) and leave space on the left to add something: $x^{2}+5 x+(\underbrace{})=2+\underbrace{\square}$
Find half of the coefficient of x , and square it: add that square to both sides above.
This makes the left-hand side have the form of a perfect square:
$(x+\underbrace{})^{2}=\underbrace{}$
Solve using the square root property:
3) Solve for $x: 3 x^{2}-8 x+7=0$

The left-hand side cannot be factored. We will rewrite this equation so that the left-hand side has the form of a perfect square trinomial:
Move the constant term to the other side (subtract 7 from both sides)
$3 x^{2}-8 x+=-7$
Since the leading coefficient is not 1 , we will divide both sides by that number before completing the square: $\underline{3 x^{2}}-8 x=-7$

Simplify, and leave space to add something on the left-hand side:
Find half of the coefficient of x , and square it: add that square to both sides above.

This makes the left-hand side have the form of a perfect square:
$(x+\underbrace{}_{\text {Solve using the square root }})^{2}=\underbrace{}$
Solve using the square root property:

