# **EXAM 4 REVIEW**

m) find 
$$4\vec{v}+7\vec{w}$$
 for  $\vec{v}=\langle 2,3\rangle$  and  $\vec{w}=\langle 5,1\sqrt{3}\rangle$ 

n) find 
$$\vec{v}-2\vec{w}$$
 for  $\vec{v}=\langle -11,-6\rangle$  and  $\vec{w}=\langle -3,2\rangle$ 

Find a unit vector in the direction of the given vector.

a) 
$$\langle 8, -6 \rangle$$

a) 
$$\langle 8, -6 \rangle$$
 b)  $\langle -3, -\sqrt{7} \rangle$  c)  $\langle 9, 2 \rangle$ 

c) 
$$\langle 9, 2 \rangle$$

Add, subtract, multiply, and divide as indicated.

a) 
$$(5-2i) + (-2+6i)$$
 b)  $(-9-i) - (5-3i)$ 

b) 
$$(-9-i)-(5-3i)$$

Find the approximate magnitude and direction angle of sum  $ec{v}=ec{v_1}+ec{v_2}$ of the given vectors  $\vec{v_1}$  and  $\vec{v_2}$  (see Example 22.18).

a) 
$$||\vec{v_1}||=6$$
, and  $\theta_1=60^\circ$ , and  $||\vec{v_2}||=2$ , and  $\theta_2=180^\circ$ 

Find the absolute value |a+bi| of the given complex number, and simplify your answer as much as possible.

a) 
$$|4 + 3i|$$

b) 
$$|6 - 6i|$$

c) 
$$|-3i|$$

a) 
$$|4+3i|$$
 b)  $|6-6i|$  c)  $|-3i|$  d)  $|-2-6i|$ 

Convert the complex number into polar form  $r(\cos(\theta) + i\sin(\theta))$ .

a) 
$$2 + 2i$$

b) 
$$4\sqrt{3} - 4i$$

c) 
$$-7 + 7\sqrt{3}i$$

d) 
$$-5 - 5i$$

e) 
$$8 - 8i$$

f) 
$$-8 + 8i$$

g) 
$$-\sqrt{5} - \sqrt{15}i$$

a) 
$$2+2i$$
 b)  $4\sqrt{3}-4i$  c)  $-7+7\sqrt{3}i$  d)  $-5-5i$  e)  $8-8i$  f)  $-8+8i$  g)  $-\sqrt{5}-\sqrt{15}i$  h)  $\sqrt{7}-\sqrt{21}i$ 

Convert the complex number into the standard form a + bi.

a) 
$$6(\cos(150^\circ) + i\sin(150^\circ))$$

a) 
$$6(\cos(150^\circ) + i\sin(150^\circ))$$
 b)  $10(\cos(315^\circ) + i\sin(315^\circ))$ 

c) 
$$2(\cos(90^\circ) + i\sin(90^\circ))$$
 d)  $\cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6})$ 

d) 
$$\cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6})$$

Multiply the complex numbers and write the answer in standard form a + bi.

a) 
$$4(\cos(27^\circ) + i\sin(27^\circ)) \cdot 10(\cos(123^\circ) + i\sin(123^\circ))$$

b) 
$$7(\cos(182^\circ) + i\sin(182^\circ)) \cdot 6(\cos(43^\circ) + i\sin(43^\circ))$$

Divide the complex numbers and write the answer in standard form a+bi.

a) 
$$\frac{18(\cos(320^\circ) + i\sin(320^\circ))}{3(\cos(110^\circ) + i\sin(110^\circ))}$$

b) 
$$\frac{10(\cos(207^{\circ}) + i\sin(207^{\circ}))}{15(\cos(72^{\circ}) + i\sin(72^{\circ}))}$$

Determine the general nth term  $a_n$  of an arithmetic sequence  $\{a_n\}$  with the data given below.

a) 
$$d = 4$$
, and  $a_8 = 57$ 

a) 
$$d = 4$$
, and  $a_8 = 57$  b)  $d = -3$ , and  $a_{99} = -70$ 

Determine the value of the indicated term of the given arithmetic sequence.

a) if 
$$a_1 = 8$$
, and  $a_{15} = 92$ ,

find 
$$a_{19}$$

Determine the sum of the arithmetic sequence.

- a) Find the sum  $a_1 + \cdots + a_{48}$  for the arithmetic sequence  $a_n = 4n + 7$ .
- b) Find the sum  $\sum_{n=1}^{21} a_n$  for the arithmetic sequence  $a_n = 2 5n$ .

Find the value of the finite geometric series using formula (25.2). Confirm the formula either by adding the the summands directly, or alternatively by using the calculator.

- a) Find the sum  $\sum_{j=1}^{4} a_j$  for the geometric sequence  $a_j = 5 \cdot 4^{j-1}$ .
- b) Find the sum  $\sum_{i=1}^{7} a_i$  for the geometric sequence  $a_n = \left(\frac{1}{2}\right)^n$ .

Find the value of the infinite geometric series.

a) 
$$\sum_{j=1}^{\infty} a_j$$
, for  $a_j = 3 \cdot \left(\frac{2}{3}\right)^{j-1}$  b)  $\sum_{j=1}^{\infty} 7 \cdot \left(-\frac{1}{5}\right)^j$ 

b) 
$$\sum_{j=1}^{\infty} 7 \cdot \left(-\frac{1}{5}\right)^j$$

c) 
$$\sum_{j=1}^{\infty} 6 \cdot \frac{1}{3^j}$$

d) 
$$\sum_{n=1}^{\infty} -2 \cdot (0.8)^n$$

A geometric sequence,  $a_n = a_1 \cdot r^{n-1}$ , has the given properties. Find the term  $a_n$  of the sequence.

a) 
$$a_1 = 3$$
, and  $r = 5$ ,

find  $a_4$ 

b) 
$$a_1 = 200$$
, and  $r = -\frac{1}{2}$ ,

find  $a_6$ 

c) 
$$a_1 = -7$$
, and  $r = 2$ ,

find  $a_n$  (for all n)

d) 
$$r = 2$$
, and  $a_4 = 48$ ,

find  $a_1$ 

# Exercise V.1

Find the magnitude and direction angle of the vector

$$\vec{v} = \langle 7, -7\sqrt{3} \rangle.$$

# Exercise V.2

For the vectors  $\vec{v}=\langle 3,-2 \rangle$  and  $\vec{w}=\langle -5,6 \rangle$ , evaluate the following expression:

$$7 \cdot \vec{v} - 3 \cdot \vec{w}$$

#### Exercise V.3

Convert the complex number to polar form:

a) 
$$-3-3i$$

a) 
$$-3-3i$$
 b)  $-5\sqrt{3}+5i$ 

# Exercise V.4

Multiply and write the answer in standard form:

$$4(\cos(207^{\circ}) + i\sin(207^{\circ})) \cdot 2(\cos(108^{\circ}) + i\sin(108^{\circ}))$$

# Exercise V.5

Divide and write the answer in standard form:

$$\frac{9(\cos(190^\circ) + i\sin(190^\circ))}{15(\cos(70^\circ) + i\sin(70^\circ))}$$

# Exercise V.6

Evaluate the sum:

$$\sum_{n=1}^{7} (3n^2 + 4n)$$

# Exercise V.7

Determine whether the sequence is an arithmetic sequence, geometric sequence, or neither. If it is one of these, then find the general formula for the nth term  $a_n$  of the sequence.

- a)  $54, -18, 6, -2, \frac{2}{3}, \dots$ b)  $2, 4, 8, 10, \dots$ c)  $9, 5, 1, -3, -7, \dots$

#### Exercise V.8

Find the sum of the first 75 terms of the arithmetic sequence:

$$-30, -22, -14, -6, 2, \dots$$

#### Exercise V.9

Find the sum of the first 8 terms of the geometric series:

$$-7, -14, -28, -56, -112, \dots$$

#### Exercise V.10

Find the value of the infinite geometric series:

$$80 - 20 + 5 - 1.25 + \dots$$