Review for Exam 3

If $7^x = 3$, then x is equal to

- 1) $(\log 3)(\log 7)$
- $\log 3 \log 7$

- $6^{x+2} = 7^x$ a) Find the exact solution of the equation:
- b) Use the calculator to approximate your solution from part (a).

In 2020, the population of a city was 15,000, and it is increasing exponentially at 2% per year.

- (a) What will the population be after 6 years?
- (b) In what year will the population double?

a)
$$\sin(75^{\circ})$$

b)
$$\cos(15^{\circ})$$

a)
$$\sin(75^{\circ})$$
 b) $\cos(15^{\circ})$ c) $\tan(105^{\circ})$

e)
$$\cos(345^{\circ})$$
 f) $\sin(15^{\circ})$ g) $\cos(285^{\circ})$

f)
$$\sin(15^\circ)$$

g)
$$\cos(285^\circ)$$

a)
$$\cos(22.5^{\circ})$$

e)
$$\sin(7.5^{\circ})$$

Find the amplitude, period, and phase shift of the function. Use this information to graph the function over a full period. Label all roots, maxima, and minima of the function.

a)
$$y = 5\cos(2x)$$

$$b) y = -4\sin(\pi x)$$

a)
$$y = 5\cos(2x)$$
 b) $y = -4\sin(\pi x)$ c) $y = 4\sin(5x - \pi)$

Solve for x. State the general solution without approximation.

a)
$$tan(x) - 1 = 0$$

b)
$$2\sin(x) = 1$$

a)
$$\tan(x) - 1 = 0$$
 b) $2\sin(x) = 1$ c) $2\cos(x) + \sqrt{3} = 0$

Write the expression as one of the six trigonometric functions.

b)
$$sec(x) \cdot cot(x)$$

e)
$$\frac{\cot(x)}{\csc(x)}$$

Simplify the expression as much as possible.

a)
$$\frac{\cos^2(x)-1}{\sin(x)}$$

b)
$$\frac{1-\sin^2(x)}{\cot(x)}$$

Find the exact values of the trigonometric functions of $\frac{\alpha}{2}$ and of 2α by using the half-angle and double-angle formulas.

c)
$$\sin(\alpha) = \frac{-3}{5}$$
, and α in quadrant III

d)
$$tan(\alpha) = \frac{4}{3}$$
, and α in quadrant III

Verify the identity: $\tan^2(x)\cos(x) - \sec(x) = -\cos(x)$

If
$$\theta = \operatorname{Arc} \cos \left(\frac{\sqrt{3}}{2} \right)$$
, what is the measure of angle θ ?

If $\sin A = \frac{4}{5}$, $\tan B = \frac{5}{12}$, and angles A and B are in Quadrant I, what is the value of $\sin(A + B)$?

- 1) $\frac{63}{65}$
- 2) $-\frac{63}{65}$
- 3) $\frac{33}{65}$
- 4) $-\frac{33}{65}$

The expression $\frac{2\cos\theta}{\sin 2\theta}$ is equivalent to

- 1) $\csc \theta$
- 2) $\sec \theta$
- 3) $\cot \theta$
- 4) $\sin \theta$

Using the formula for cos(x - y), find the exact value of $cos 15^{\circ}$ in radical form if $m \angle x = 45$ and $m \angle y = 30$.