Review for Test #2 Topics Transformations of Functions Reflections, Vertical and Horizontal shifts Combinations of Functions Compositions of Functions

Donow:

1. Write the equation for the graph of function g(x), obtained by shifting the graph of $f(x) = x^2$

three units left, stretching the graph vertically by a factor of two, reflecting that result over the *x*-axis, and then translating the graph up four units.

Given the graph of the function f(x) shown below, sketch the graphs of:

$$b \cdot f(x) - 2$$

$$c. f(-x)$$

Graph the two functions:

$$f(x) = |x| + 3$$

$$f(x) = |x| + 3$$
 $g(x) = |x + 3|$

Write the equation for the graph shown at the right. Assume that the parent function was

$$y = |x|$$
.


```
Using f(x) = x-2 and g(x) = 5x+3,
find: a. f(g(2))
b. g(f(-4))
c. f(f(1))
d. f(g(x))
```

Using f(x) = x-2 and g(x) = 5x+3, find: **a.** f(g(2))**b.** g(f(-4))**c.** f(f(1))**d.** f(g(x))

$$f(x) = 3x + k$$
 and $g(x) = \frac{x - 4}{3}$

For what value of k is f(g(x)) = g(f(x))?

$$f(x) = \frac{x}{x+1}$$
 and $g(x) = \frac{1}{x-2}$

Find the domain of $(f \circ g)(x)$.

Find $(f \circ f^{-1})(5)$

Find the inverse for the function y = 4x + 12.

Find the inverse for the function

$$y = (x+2)^3$$

Find the inverse for the function

$$y = \frac{x+3}{x}$$
 (where x is not zero).

