NEW YORK CITY COLLEGE OF TECHNOLOGY/CUNY DEPARTMENT OF COMPUTER SYSTEMS TECHNOLOGY

CST1101–PROBLEM SOLVING WITH COMPUTER PROGRAMMING (4 hours – 3 credits) SUMMER I 2020

Instructor:

Name	Prof. Tamrah D. Cunningham
Office Location	Online for the Summer
E-mail	TCunningham@citytech.cuny.edu
Office Hours	Fridays from Noon - 2:30 pm. First, email for an appointment, and then a
	Zoom link will be provided along with confirmation. I will respond to emails
	within 24 hours of receiving them.

Meeting Days:

Monday	11:30 am – 2:00 pm	Blackboard Collaboration Ultra
Tuesday	11:30 am – 2:10 pm	Blackboard Collaboration Ultra
Wednesday	11:30 am – 2:10 pm	Blackboard Collaboration Ultra
Thursday	11:30 am – 2:10 pm	Blackboard Collaboration Ultra

Course Description:

This course introduces students to concepts of problem-solving using constructs of logic inherent in computer programming languages. Students study the nature of problems, common solution approaches and analysis techniques. Students use a flowchart interpreter to diagram problem solutions. Students learn the basics of computer programming by learning Python. Both Python scripts and flowcharts enable students to construct solutions to common algorithmic problems. The major emphasis is on teaching the student to identify solutions to a problem and translate them into various forms that will enable the computer to perform some of the steps in a solution of an actual problem instance. These forms include flowcharting tool, viewing generated software code and the basics of debugging the code. At the end of the class students will write a project Python scripts that demonstrates the students' knowledge of all the basic programming concepts discussed in class (e.g., variables, conditions, loops, functions).

Online Course:

This course is online and will be taught synchronously on Blackboard. What that means is that for every meeting day, students will log on to Blackboard, access Blackboard Collaboration Ultra and join the session for that day. An announcement will be sent every time there will be class. If you are not able to be in front of a computer at that time, you can dial-in and use your phone. If you miss out on the online lecture for that day, a recording of the session will be made available later that day for you to view. **Online Attendance and Participation:**

Your attendance will be taken at the end of online session. When you log in, Blackboard will track the time you enter the session and the time that you leave. Participation for the course is based on responding via the chat and/or voice.

If you have any technical issues with Blackboard, check out this link below: <u>http://websupport1.citytech.cuny.edu/studentbb.html</u>

Course Objectives

Upon successful completion of the course, students should be able to:

- Demonstrate understanding of the steps required to solve a problem using a computer;
- Demonstrate understanding of flowcharting techniques to solve an algorithm;
- Demonstrate the knowledge or Boolean algebra (AND, OR, NOT operations);
- Demonstrate understanding of the major programming notions: variables, decision statements, repetition/loop statements (both count- and event-controlled), arrays/lists, modules/functions, classes and objects and their use for basic problem solving;
- Demonstrate understanding of the two major programming paradigms: procedural and object-oriented;
- Install and run the IDLE Python programming environment;
- Design and implement basic Python scripts; and
- Demonstrate broad problem-solving experience by referring to solutions from a problem bank covered during class.

General Education Outcomes

- **SKILLS/Inquiry/Analysis:** Students will employ scientific reasoning and logical thinking.
- **SKILLS/Communication:** Students will communicate in diverse settings using oral (both speaking and listening) and visual means.
- VALUES, ETHICS, RELATIONSHIPS / Professional/Personal Development: Students will have access to on-line materials and solutions to programming problems and will be required to process those materials and solutions, understand them, use the ideas from them without passing others' ideas as their own.

Prerequisite – CUNY certification in mathematics, reading and writing. General knowledge of a personal computer is needed. Students may enroll in a workshop at the Academic Learning Center, located in the Atrium.

This is an OER (Open Educational Resources) course. All the required reading materials are free. The OER page for the course can be viewed here: https://openlab.citytech.cuny.edu/cst1101-problemsolvingpython

Storage Media – You must have a USB storage media.

Software Download (free, online)

You will need a Windows or Mac computer/laptop with broadband internet access.

• Python official site that includes documentation, downloads (IDLE for Python 3.7), news:

https://www.python.org

• Flowchart interpreter http://www.flowgorithm.org/

Recommended reading (free, online)

• Algorithmic Problem Solving with Python by John B. Schneider, Shira Lynn Broschat, and Jess Dahmen.

http://www.eecs.wsu.edu/~schneidj/swan/index.php

- How to Think Like a Computer Scientist by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers <u>http://www.openbookproject.net/thinkcs/python/english3e/</u>
- Python Bibliotheca: <u>http://www.openbookproject.net/pybiblio/</u>

Grading Distribution

Homework Assignments, in-class quizzes	27%
Test1	15%
Test2	15%
Project	10%
Uniform CST 1101 quiz	3%
Final Exam (cumulative)	30%
Total	100%

Grade System:

Letter	Α	A-	B+	В	B-	C+	С	D	F
Grade									
Numerical	93-	90-	87-	83-	80-	77-	70-	60-	<=59.9
Grade	100	92.9	89.9	86.9	82.9	79.9	76.9	69.9	

The grade distribution follows the information in the NYCCT Student Handbook (p.43).

NYCCT Student Handbook can be downloaded here: <u>http://www.citytech.cuny.edu/current-student/docs/StudentHandbook.pdf</u>.

ONLINE ETIQUETTE AND ANTI-HARASSMENT POLICY

The University strictly prohibits the use of University online resources or facilities, including Blackboard, for the purpose of harassment of any individual or for the posting of any material that is scandalous, libelous, offensive or otherwise against the University's policies. Please see: <u>"Netiquette in an Online Academic Setting: A Guide for CUNY School of Professional Studies Students."</u>

New York City College of Technology Policy on Academic Integrity:

Students and all others who work with information, ideas, texts, images, music, inventions, and other intellectual property owe their audience and sources accuracy and honesty in using, crediting, and citing sources. As a community of intellectual and professional workers, the College recognizes its responsibility for providing instruction in information literacy and academic integrity, offering models of good practice, and responding vigilantly and appropriately to infractions of academic integrity. Accordingly, academic dishonesty is prohibited in The City University of New York (CUNY) and at New York City College of Technology (City Tech) and is punishable by penalties, including failing grades, suspension, and expulsion .The complete text of the College policy on Academic Integrity may be found in the catalog.

Notice on Student Accessibility Services:

"Qualified students with disabilities, under applicable federal, state and city laws, seeking reasonable accommodations or academic adjustments must contact the Center for Student Accessibility for information on City Tech's policies and procedures to obtain such services. Students with questions on eligibility or the need for temporary disability services should also contact the Center at: The Center for Student Accessibility, 300 Jay Street room L-237, 718 260 5143. http://www.citytech.cuny.edu/accessibility "

Course Schedule

	Торіс	Discussion Board Post	Assignment
06/01	Introduction to the Course		Problem-Solving
	 Syllabus Review 		Assignment 1
	 Class Logistics (Daily Discussion Board Posts, Assignment Submissions, Resources Locations) 		Due: end of day (EOD), 11:59 pm
06/02	 Topic: What is Problem-Solving and Algorithms? Define problems and problem solving in terms of computers Look at examples of different kinds of problems Define algorithms Look at some of the problems discussed earlier and come up with an algorithm to solve the problem Discuss the 3 rules of algorithms 	 Why Algorithms In your post, answer the following: What are the benefits of coming up with algorithms to solve for a problem? 	Problem-Solving Assignment 2 Due: EOD
06/03	 Topic: What is PACT and Computer Problem Solving? Breakdown PACT (Problem Definition, Analyze, Carry out Strategy, Test and Evaluate) Discuss a problem and break it down based on PACT Input, Process and Output Defining a program Defining the different types of instructions: Sequence 	Automating PACT - In your post, answer the following: O Which steps of PACT can be handled by a computer? Why do you think so?	Problem-Solving Assignment 3 Due: EOD Download Python 3.9 and Flowgorithm (For MAC users, look for an online alternative)

	 Conditions Repetitions Subprograms 		
06/07	 Topic: What are Flowcharts? Why Flowcharts? Introduction to Flowgorithm 	Using Flowcharts - In your post, answer the following: Why do you think programmers should (or shouldn't) make use of flowcharts before coding?	Problem-Solving Assignment 4 Due: EOD
06/08	 Topic: What is Python? Why Python? Introduction to IDLE Code Readability and Comments 	Using Python - In your post, answer the following: O Compare Python with another programming language of your choice. What are the differences and similarities?	Problem-Solving Assignment 5 Due: EOD
06/09	 Topic: What are Variables? Variable Types of Flowgorithm Assignments in Flowgorithm Data Input/Output in Flowgorithm 	Understanding Variables In your post, answer the following: How valuable are variables in coding? 	Problem-Solving Assignment 6 Due: EOD
06/10	 Topic: What are Variables (cont.)? Variable Types of Python Assignments in Python Data Input/Output in Python Type Conversion 	 Week's Reflection In your post, answer the following: What did you learn about this week? Are there any concepts that you did not understand? What are the benefits of using flowcharts before coding? 	Problem-Solving Assignment 7 Due: EOD

06/14	Topic: What are Conditions?	Understanding Conditions	Problem-Solving
	- Conditional Executions (If-Else)	- In your post, answer the	Assignment 8
	- Branching in Flowgorithm	following:	-
	- Conditions in Python:	 Come up with 	Due: EOD
	- If	vour own	
	- If-else	condition-based	
	If-elif	problem	
		providenti	
06/15	Topic: What is Boolean Logic?	Understanding Boolean Logic	Problem-Solving
	- Difference between Arithmetic,	- In your post, answer the	Assignment 9
	Relational and Logical Operators	following:	
	- AND/OR/NOT	\circ What are the key	Due: EOD
	-	differences	
		between AND	
		and OR?	
06/16	Topic: What are Functions?	Understanding Functions	Review for Test 1
	- Why do we create functions within	- In your post, answer the	
	a program?	following:	
	- Examples of functions	 What is the 	
	- Parameters/Arguments	significance of	
	- Passing Parameters	having	
	-	parameters	
		defined for a	
		function?	
06/17	Test 1	Weekly Reflection	No Assignment
		- In your post, answer the	
		following:	
		\circ What did you	
		learn about this	
		week?	
		 Are there any 	
		concepts that you	
		did not	
		understand?	
		 How do you think 	
		you did on the	
		first test? Is there	
		anything you	
		could've done	
		differently to	
		prepare for the	
		test?	
06/21	Topic: What are While Loops?	Understanding While Loops	Problem-Solving
	Characteristics of a while loop	- In your nost answer the	Assignment 10
	- Characteristics of a write loop	in your post, unswer the	71351611110110 10
	 Nested while loops 	following:	, losigninent 10

		 What are the 	
		defining features	
		of a while loop?	
		How can we	
		establish an	
		infinite loop?	
06/22	Topic: What are Lists?	Understanding Lists	Problem-Solving
	- Characteristics of a list object	- In your post, answer the	Assignment 11
	Methods and Functions used in lists	following:	-
		 Can you come up 	Due: EOD
		with a problem	
		that requires the	
		user to fill in a	
		list?	
06/23	Topic: What are For Loops?	Understanding For Loops	Review for Test 2
	 Characteristics of a for loop 	- In your post, answer the	
	 Nested for loops 	following:	
		What are the	
		differences	
		between a for	
		loop and a while	
		loop? When	
		would you use	
		one over the	
		other?	
06/24	Test 2	Weekly Reflection	No Assignment
		- In your post, answer the	
		following:	
		 What did you 	
		learn about this	
		week?	
		 Are there any 	
		concepts that you	
		did not	
		understand?	
		How do you think	
		you aid on the	
		second test? Did	
		you try any of the	
		suggestions you	
06/20	Topic: What are Strings?	made last week?	Bractice Qui-
00/28	Defining strings as a special same of	In your past answer the	Fractice Quiz
	lists	following:	
	lists Strings and Itarations	ionowing:	
	 strings and iterations 		

		 What makes strings similar to lists? 	
06/29	Topic: What is OOP? Introduction of the OOP paradigm	Understanding OOP - In your post, answer the following: How do you see object-oriented programming being utilized in coding?	Review for Final
06/30	Final		
07/01	Final Day of Class		Project Due: EOD

Assessment Criteria

Fo	r the successful completion of this course	Evaluation methods and criteria
	a student should be able to:	
1.	Demonstrate understanding of the steps required to solve a problem using a computer.	Students will describe problem, identify inputs, processes and desired outcomes in laboratory assignments, class work and tests.
2.	Demonstrate understanding of flowcharting techniques to solve an algorithm.	Students will solve problems using the flowchart interpreter software and Python 2.7 in laboratory assignments, class work and tests.
3.	Demonstrate the knowledge or Boolean algebra (AND, OR, NOT operations)	Students will solve Boolean algebra problems in laboratory assignments, class work and tests and incorporate these solutions in flowcharts and Python scripts.
4.	Demonstrate understanding of the major programming notions: variables, decision statements, repetition/loop statements (both count- and event-controlled), arrays/lists, modules/functions, classes and objects and their use for basic problem solving.	Students will create algorithms for problem solving using the basic programming notions in laboratory assignments, class work and tests.
5.	Demonstrate understanding of the two major programming paradigms: procedural and object-oriented.	Students will create new classes and objects of these classes in laboratory assignments, class work and tests.

-		
6.	Install and run the IDLE Python programming environment.	To complete homework assignments and practice programming skills outside the college students will install the IDLE Python environment on their own computers.
7.	Design and implement basic Python scripts.	Students will use the knowledge of Boolean Algebra, problem solving paradigms and basic programming notions to write Python scripts in laboratory assignments, class work and tests.
8.	Demonstrate broad problem-solving experience by referring to solutions from a problem bank covered during class	Students will demonstrate problem-solving ability in laboratory assignments, class work and tests.

General Education Outcomes and Assessment

Learning Outcomes	Assessment Method
SKILLS/Inquiry/Analysis Students will	Students will describe problem, identify
employ scientific reasoning and logical	inputs, processes and desired outcomes in
thinking.	laboratory assignments, class work and tests.
	Students will solve problems using the
	flowchart interpreter software and Python in
	laboratory assignments, class work and tests.
	Students will identify coding paradigms in
	Laboratory Assignments, Class work and tests
SKILLS/Communication Students will	Students will discuss various problems and
communicate in diverse settings using oral	approaches towards solving these problems in
(both speaking and listening) and visual	class
means.	
VALUES, ETHICS, RELATIONSHIPS/	Students will learn to respectfully use the
Professional/Personal Development	code generated by other programmers giving.
Students will have access to on-line materials	
and solutions to programming problems and	
will be required to process those materials and	
solutions, understand them, use the ideas from	
them without passing others' ideas as their	
own.	