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Abstract—We propose a new model for estimating subsurface
soil moisture using P-band radar data over barren, shrubland, and
vegetated terrains. The unknown soil moisture profile is assumed
to have a second-order polynomial form as a function of subsur-
face depth with three unknown coefficients that we estimate using
the simulated annealing algorithm. These retrieved coefficients
produce the value of soil moisture at any given depth up to a
prescribed depth of validity. We use a discrete scattering model
to calculate the radar backscattering coefficients of the terrain.
The retrieval method is tested and developed with synthetic radar
data and is validated with measured radar data and in situ soil
moisture measurements. Both forward and inverse models are
briefly explained. The radar data used in this paper have been
collected during the Airborne Microwave Observatory of Sub-
canopy and Subsurface (AirMOSS) mission flights in September
and October of 2012 over a 100 km by 25 km area in Arizona,
including the Walnut Gulch Experimental Watershed. The study
area and the ancillary data layers used to characterize each radar
pixel are explained. The inversion results are presented, and it
is shown that the RMSE between the retrieved and measured
soil moisture profiles ranges from 0.060 to 0.099 m3/m3, with a
Root Mean Squared Error (RMSE) of 0.075 m3/m3 over all sites
and all acquisition dates. We show that the accuracy of retrievals
decreases as depth increases. The profiles used in validation are
from a fairy dry season in Walnut Gulch and so are the accuracy
conclusions.

Index Terms—Airborne Microwave Observatory of Subcanopy
and Subsurface (AirMOSS), discrete scattering model, quadratic
function, radar, remote sensing, second-order polynomial, simu-
lated annealing, soil moisture profile.

I. INTRODUCTION

SOIL moisture is a key variable of the Earth system due
to its role in connecting the processes between the land

surface and the atmosphere. Soil moisture links the water and
carbon cycles through the vegetation cover and its roots. It
has been shown that there is strong feedback between the soil
moisture anomalies and climate [1]. Mapping of the global
soil moisture can therefore improve our understanding of
the global water, energy, and carbon cycles, as well as the
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climate. The importance of global soil moisture maps has
motivated missions such as the NASA Soil Moisture Active
and Passive (SMAP) mission [2], NASA Earth Ventures 1
(EV-1) Airborne Microwave Observatory of Subcanopy and
Subsurface (AirMOSS) [3], and the European Space Agency
(ESA) Soil Moisture and Ocean Salinity (SMOS) [4].

Since the 1970s, the effects of soil moisture on the scat-
tered electromagnetic waves have been studied [5]. All along,
microwave-based retrieval of soil moisture has remained a
challenging problem due to modeling complexity of the veg-
etation canopy, land topography, and soil layers. Several em-
pirical and theoretical forward models have been developed
for both bare and vegetated surfaces, including models that
use empirical functions based on measured data [6], [7] or
models that use fitted functions based on synthesized radar
data [8], [9]. If the forward model has a simple invertible
functional form, the inversion is straightforward [9], but for
more complicated models without direct inverses, methods such
as nonlinear optimization [10] or data cube searches [11] have
been used for inversion. Bayesian estimation methods are other
inversion techniques that use conditional density functions to
find an optimum estimator that minimizes the RMSE [12].
Some inversion techniques, including time series [13], [14]
and change detection [15], are based on temporal variation
of soil moisture under the assumption that surface roughness
and vegetation water content do not change appreciably during
successive observations. Both methods assume a linear relation
between soil moisture and logarithm of the radar backscattering
coefficient (i.e., the backscattering coefficient in the dB scale).

The aforementioned techniques, excluding that in [10],
model the soil as a homogeneous half-space and retrieve only
one effective value for the soil moisture. However, considering
a layered dielectric structure, if a single soil moisture value is
retrieved, it will not necessarily be representative of any layer’s
soil moisture. Additionally, as shown in this paper, one retrieved
soil moisture value does not correspond to any unique or
meaningful linear averaging scheme over the moisture contents
of the layers. While there might exist a nonlinear averaging
scheme, particularly for cases with different layer thicknesses,
such a scheme would be a function of the profile shape, and a
unique averaging scheme that is applicable to a large range of
profiles cannot be defined. Moreover, and most importantly, we
are interested in the soil moisture content of individual layers
at several depths up to the root zone. Clearly, one average value
cannot uniquely represent multiple soil moisture contents.
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There have been several studies on the retrieval of a soil
moisture profile from both active and passive remote sensing
observations. These studies have either been limited to retrieval
of soil moisture of the first few centimeters of soil [16] or to
retrieval of the soil moisture profile from surface soil moisture
using sequential data-assimilation techniques [17]–[19]. When
direct retrieval of root-zone soil moisture (RZSM) has been
studied, the models have used data cubes for specific soil
conditions [20], [21]. Nonetheless, direct retrieval of RZSM
under vegetation canopies using active remote sensing data
(either real or synthesized) has not been studied, although it
has been shown that deeper soil moisture can impact the radar
response significantly [22]–[24]. In this paper, we propose a
method to use real radar signal at P-band to retrieve the soil
moisture profile without limiting the technique to any specific
site or soil.

The number of synthetic aperture radar (SAR) observations
(in terms of frequency, polarization channels, and incidence
angles) is usually limited. For example, for AirMOSS measure-
ments, there are up to three independent polarization channels
(i.e., HH, VV, HV), one frequency band (namely 420–440 MHz,
with the center frequency of 430 MHz), and one incidence
angle in the range of 25◦–55◦.1 Therefore, regardless of the
scattering and inversion models used, the estimation of RZSM,
whether in barren or vegetated surfaces, is challenging, and we
would have to minimize the number of unknown parameters
commensurately with the number of measured data points.
Moreover, by definition, RZSM needs to be known at depths
that would only be reached if several layers are included in the
retrieval process. Therefore, we need a method of estimating
the moisture contents of layers that can be used to retrieve
meaningful values representing surface and subsurface mois-
ture without introducing a large number of unknowns. Since
it is not feasible to define the unknowns as the soil moisture
contents of the individual soil layers, one solution would be to
parameterize the moisture profile and estimate these parame-
ters. Several functions can be identified as representatives of
soil moisture, namely linear, piecewise linear, exponential, and
parabolic [25]. Moreover, physics-based profiles can also be
found by solving, via our optimization method, the differential
equation that governs the steady-state vertical flux [26].

In this paper, we propose a second-order polynomial func-
tion. Accordingly, the moisture profile has the form of az2 +
bz + c, where z is the depth below surface, and a, b, and c are
the coefficients to be retrieved from radar measurements. A pre-
liminary version of this concept has been reported previously
[27], but it was not sufficiently developed or validated with
AirMOSS data. The choice of quadratic function is just a be-
ginning step toward retrieving functions that are representative
of the entire profile while other aforementioned possibilities
warrant extensive study, which is part of our future work.

The parameters that characterize a radar pixel are the veg-
etation parameters and soil texture information, which are
described later. In this paper, we assume the soil profile is

1For some narrow areas that are overlaps of two flight lines, there might be
two look angles available for the inversion algorithm, but these areas are very
small portions of the entire flown area.

the only unknown and consider every other parameter (namely
vegetation parameters, and soil texture and structural informa-
tion) as known. In particular, we assume a priori soil roughness
information is available from field measurements. Soil rough-
ness has been a parameter of interest in many remote sensing
studies due to its influence on the radar signal [6], [9]. However,
in this paper and in current AirMOSS data processing, due
to the limited number of SAR observations compared with
the number of unknowns, we consider roughness a known
parameter and fixed for each land cover type within a site. We
will mention later that the entire parameterization is validated
by comparing the output of the forward model against radar
data over several pixels within the same scene.

The choice of the P-band frequency allows the electromag-
netic wave to penetrate the canopy and soil easily. The soil
penetration depth (defined as the distance over which the wave
amplitude decays to 1/e or −8.7 dB of its original value) is
greater than 2 m at 435 MHz for a typical sandy soil with
a volumetric moisture content of 0.25 m3/m3 [28], giving us
confidence to reach the root zone in the retrieval process.2

This paper is organized as follows. Section II presents a brief
overview of the AirMOSS project and its radar instrument and
data. In Section III, we examine the accuracy of a second-
order polynomial fit for several cases of soil moisture profiles in
AirMOSS sites. In Section IV, we elaborate the insufficiency of
single-value retrieval in soil moisture estimation problems, and
particularly for the P-band AirMOSS. The retrieval algorithm
and the forward model are described in Section V, followed
by a brief description of ancillary data handling and processing
in Section VI. (More details on the data handling processor
will be provided in a separate paper.) The inversion results are
presented in Section VII for both synthetic and measured radar
data. Conclusion and summary remarks follow in Section VIII.

II. AIRMOSS PROJECT AND RADAR INSTRUMENT

The AirMOSS mission seeks to improve the estimates of the
North American Net Ecosystem Exchange (NEE) by: 1) pro-
viding high-resolution observations of RZSM over nine regions
representative of the major North American biomes; 2) esti-
mating the impact of RZSM on regional carbon fluxes; and
3) integrating the measurement-constrained estimates of re-
gional carbon fluxes to the continental scale of North America
[3]. AirMOSS flies a P-band SAR in order to penetrate veg-
etation and into the root zone to provide estimates of RZSM.
The flights cover areas of approximately 100 km by 25 km con-
taining FLUXNET tower sites in regions ranging from boreal
forests in Saskatchewan, Canada, to tropical forests in La Selva,
Costa Rica. The radar snapshots are used to generate estimates
of RZSM via inversion of scattering models of vegetation
overlying soils with variable moisture profiles. These retrievals
will in turn be assimilated or otherwise used by hydrologists
to estimate land model hydrological parameters over the nine

2The approach we have used in this paper is not applicable to SMAP
observations as SMAP is an L-band mission incapable of sensing deep soil
moisture. Our work is, however, beneficial in the validation and accuracy
assessment of the SMAP Level 4 products.
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Fig. 1. Measured moisture profiles and their second- and third-order polynomial fits at locations close to the flux towers in (a) Walnut Gulch from September 20,
2012, (b) BOREAS OJP from July 29, 1994, (c) Tonzi Ranch from January 8, 2012, (d) MOISST from October 14, 2012, and (d) MOISST from April 15, 2012.
The RMSEs show that a second-order fit meets the AirMOSS error criterion of an absolute RMSE of less than 0.05 m3/m3.

biomes, generating a fine-grained time record of soil moisture
evolution in the root zone. These hydrological parameters will
ultimately be integrated with an ecosystem demography model
to predict the respiration and photosynthesis carbon fluxes.

The AirMOSS radar is based on JPL’s L-band Uninhabited
Aerial Vehicle SAR (UAVSAR) system. The AirMOSS P-band
SAR uses UAVSAR’s existing L-band RF and digital elec-
tronics subsystems, but new upconverters and down-converters
convert the L-band signals to ultrahigh frequencies (i.e., 280–
440 MHz). The project requirements for relative and absolute
calibration accuracy levels are 1 (i.e., ±0.5) and 1.5 (i.e.,
±0.75) dB, respectively.3 These accuracy values have been
achieved based on the analysis of 4.8-m trihedral corner reflec-
tor data. The variability seen in the radar data from our cali-
bration site (in Rosamond dry lake bed in California) implies
that we have data-take-to-data-take radiometric biases. Based
on the calibration site data, collected on multiple days spread
over a period of over a year, the bias from one day to another is
the similar size as the bias from one data take to another on
the same day. The calibration stability associated with these
data is estimated at 0.6 dB. Moreover, the speckle noise (i.e.,
signal standard deviation normalized to its mean value) at the
0.5- and 3-arcsecond spatial resolution at the Walnut Gulch
site (our study site in this paper) is, respectively, � −11.3 and

3The relative calibration accuracy refers to an intrascene variation of the
radar data, whereas the absolute calibration accuracy refers to deviation of the
radar data from the true values. Both accuracy values are measured within the
same date take over the calibration site.

� −18.9 dB, given σo � −40 dB, where σo is the system’s
noise-equivalent sigma nought.

The project and its radar system are respectively detailed in
the project Web site [3] and in a previous AirMOSS publication
by Chapin et al. [29].

III. POLYNOMIAL FIT OF SOIL-MOISTURE PROFILE

To examine whether it is reasonable to assume moisture
profiles can be approximated with a second-order polynomial,
we have studied the moisture data, ranging from very dry to
very wet, from four AirMOSS sites. Fig. 1 shows five examples
of soil moisture profile from these sites. Fig. 1(a) shows a
profile from September 20, 2012 in Lucky Hills Shrubland
in the Walnut Gulch Experimental Watershed, AZ. Fig. 1(b)
shows a similar profile from May 25, 1994, in an old Jack
pine (OJP) forest of the Boreal Ecosystem–Atmosphere Study
(BOREAS) site in Saskatchewan, Canada, which is also one of
the AirMOSS sites [30]. Fig. 1(c) shows a moisture profile from
January 8, 2012 in a location close to the flux tower at the Tonzi
Ranch site of AirMOSS, located near Sacramento, CA, with a
woody Savanna land cover type. Finally, Fig. 1(d) and (e) show
two examples from October 14 and April 15, 2012, respectively,
in the MOISST site in Oklahoma with mostly grassland or bare
soil. The RMSE is small for the polynomial fits of the shown
orders and meets the AirMOSS error criterion of an absolute
RMSE of less than 0.05 m3/m3. This RMSE should ultimately
be calculated over all AirMOSS sites and all dates.
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Fig. 2. (a) Two measured moisture profiles in Arizona’s Lucky Hills from
2003. The actual measurement points are 5, 15, 30, 50, 70, 100, and 200 cm.
(b) Two nominal examples of quadratic profiles: increasing moisture with depth
and decreasing moisture with depth.

We should mention that, depending on the site and its infiltra-
tion dynamics, a higher-order polynomial may be a more accu-
rate representative of the moisture profile. Upon the availability
of more SAR observations (in terms of frequency or incidence
angle), and depending on the site, it is possible to use a higher
order polynomial in the future.

IV. LINEAR AVERAGING OF SOIL-MOISTURE PROFILE

We mentioned in Section I that in an inverse problem as-
sociated with a layered dielectric structure, one retrieved soil
moisture value is an inaccurate representation of the linear
average over the dielectric constants (or moisture contents) of
the layers. We now provide an elaboration of this statement
using synthetic radar data.

Consider the profiles shown in Fig. 2(a). These real profiles
are from a field campaign by the University of Arizona and
the U.S. Department of Agriculture Agricultural Research Ser-
vice (USDA-ARS) Southwest Watershed Research Center in
September 2003 to measure soil moisture in Arizona’s Lucky

Hills in support of the Microwave Observatory of Subcanopy
and Subsurface (MOSS) project [31].4 We investigate the re-
trieval accuracy when one value is retrieved as the “effective”
soil moisture content. To synthesize radar data, we use the
small perturbation method (SPM) model of [22] assuming bare
soil. The soil is modeled with an eight-layer geometry with the
layer boundaries located at 5, 15, 30, 50, 70, 100, and 200 cm.
These depths are the actual and only measurement points in the
profile; therefore, for simulation of the radar data, we would
have to assume an eight-layer geometry.5 We also assume
there are no distinct soil horizons, hence uniform soil texture
across all layers. For our statistical study, 300 realizations of
the geometry are generated, and for each realization, the soil
moisture contents of all layers are perturbed to generate a new
profile, hence a new set of radar data. The simulated annealing
method, explained in Section V, is then applied to retrieve
one “effective” soil moisture value from each realization. The
same forward model is used in data synthesis and cost function
evaluation in the optimization scheme. Fig. 3 shows a compar-
ison between the output of the inversion algorithm and linear
averages of the moisture contents of up to four layers of the
corresponding eight-layer geometry. We observe that the RMSE
is “small” for the dry profile, but for the case of the wet profile,
the RMSE is “large,” confirming that a single retrieved value
for soil moisture is not representative of any layer soil moisture
nor does it correspond to any linear averaging scheme over the
layers moisture contents.6

However, depending on the profile, a linear average value
may accurately represent the single retrieved value. For exam-
ple, Fig. 2(b) shows two examples of quadratic profiles with
the coefficients a = −0.5, b = 0.8, and c = 0.05, for a profile
with increasing moisture with depth, and a = 0.5, b = −0.8,
and c = 0.37, for a profile with decreasing moisture with depth.
Similar to the previous analysis, to synthesize the radar data, we
discretize the profiles. For this analysis, to capture all variations
in the profile, we discretize it with 20 layers with a thickness of
5 cm for each. For each of the 300 realizations, the coefficients
a, b, and c are perturbed independently to generate a new
profile and a new set of radar data. The simulated annealing
method is then applied to retrieve one soil moisture value, and
then a comparison is made between the retrieved soil moisture
value and several linear averages. Fig. 4 shows the result. It is
evident that while all of the presented average values generate a
small RMSE, there is an optimum number of layers that would
generate the best estimation of the retrieved soil moisture.

Based on the simulations presented in this section, we can
conclude that there is no unique linear averaging scheme that
can represent a single retrieved value for soil moisture. We
cannot claim that no other averaging scheme (such as nonlinear
or weighted linear) does so, but even if such a scheme exists,
the soil moisture profile cannot be constructed from it. Since

4The moisture information is available for the period of September 13–29,
2003. Based on these data, the soil condition was fairly dry until September 23,
2003, when a rainfall happened. The “Wet” profile was measured after that day.

5Although deep layers would have negligible contribution to the synthetic
radar data, they are included in the simulation for accuracy.

6Our measure for largeness and smallness of RMSE is the AirMOSS project
criterion of 0.05 m3/m3.
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Fig. 3. Single output of the inversion algorithm versus linear averages of the moisture contents of up to four layers for the profiles shown in Fig. 2(a). See
Section IV for details. The RMSE is large for the wet profile, confirming that a single retrieved value for soil moisture is not representative of any layer soil
moisture nor does it correspond to any linear averaging scheme over the layers moisture contents. (a) Dry profile. (b) Wet profile.

Fig. 4. Single output of the inversion algorithm versus linear averages of the moisture contents of up to four layers for the profiles shown in Fig. 2(b). See
Section IV for details. The RMSE is small for both profiles and there is an optimum number of averaged layers that would generate the best estimation of the
retrieved soil moisture. (a) Dry profile. (b) Wet profile.

the thrust of this paper is the retrieval of the moisture profile
up to a prescribed depth (that will be elaborated later), we will
estimate the moisture contents of several layers by retrieving
the unknown coefficients of the second-order polynomial that
represents the moisture profile.

V. FORWARD AND RETRIEVAL MODELS

Since all of the AirMOSS sites include vegetated areas, we
use a discrete radar scattering model to model the scattering
of electromagnetic waves at these sites. The model assumes
single-species vegetation with horizontal homogeneity within a
radar pixel while allowing vertical heterogeneity by introducing
a stem layer and a canopy layer [32], [33]. The stem layer is
represented by nearly vertical dielectric cylinders. The canopy

layer contains randomly distributed large and small dielectric
cylinders representing large and small branches. The canopy
layer also contains leaves, which are randomly but uniformly
distributed in the layer. Leaves are represented by disks or
cylinders depending on the type of the forest, i.e., decidu-
ous or coniferous. The forest floor is modeled as a layered
dielectric structure characterized by the interface roughness
and layer dielectric constants and thickness. The roots are not
taken into account in this model. The radar model identifies
several scattering mechanisms: scattering from crown layer,
scattering from trunks, double-bounce scattering between the
crown layer and ground, double-bounce scattering between the
trunks and ground, and backscattering from the ground. These
mechanisms are illustrated in Fig. 5(a). The total backscattered
power, represented by the Stokes (or Mueller) matrix, is the
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Fig. 5. (a) Scattering mechanisms present in the forward model. (b) Forest geometry and moisture profile that is assumed a quadratic function, i.e., az2 + bz + c,
where z is the depth, and a, b, and c are the coefficients to be retrieved from radar measurements.

sum of the power from all contributing scatterers [32]. The total
Stokes matrix is

Mtot = Mb +TbMtTb +TbTtMbgTtTb

+TbTtMtgTtTb +TbTtMgTtTb (1)

where T denotes transition Stokes matrix and M denotes
backscatter Stokes matrix. The subscripts “b ”, “t”, and “g”
denote “branch,” “trunk,” and “ground,” respectively.

It has been shown that, at low frequencies, the trunk-ground
double-bounce process is the mechanism primarily responsible
for the backscattering signal over forests with tall stands [8].
We also mentioned earlier that, in a layered rough surface
structure, a subsurface layer contribution to the backscattering
from ground and to the ground-trunk double-bounce scattering
process can be significant. Therefore, to include the coherent
multiple scattering effects within soil layers in the modeling
of double bounces, we have integrated a layered-soil scattering
model into the forest scattering model of [34]. We have used
the layered SPM of [22] for the backscattering from ground,
whereas the N -layer version of the coherent scattering model of
[24] has been used for the trunk-ground double-bounce mecha-
nism. This extended model will be published in future work.

The forward model uses several parameters to characterize
a vegetated area. These parameters are the properties of large
and small branches (dielectric constant, length, radius, density,
and orientation), leaves (dielectric constant, length, radius, and
density), trunks (dielectric constant, length, radius, and den-
sity), soil (volumetric moisture content, roughness RMS height)
and canopy height. The orientation of small and large branches
is described by species-specific probability density functions
(PDFs). The AirMOSS sites are divided into single-species and
multi-species sites. The focus of this paper is on the single-
species vegetation sites, but for the future, the full complexity
of realistic vegetation can be included if necessary [33]. The
parameters necessary to define the scene are based on readily
available ancillary data, described in Section VI, as well as
ground measurements. Fig. 5(b) shows the forest geometry and
the moisture profile that is assumed to have a second-order
polynomial form.

To estimate the unknown coefficients of the second-order
polynomial, namely a, b, and c, we use simulated annealing
[10], [35] to minimize a cost function that is based on the
difference between measured and calculated backscattering
coefficients, and is defined as

L(X) =
∑
pq

(
10 log σo

pq(X;p, f, θ)− 10 log dpq

10 log dpq

)2

(2)

where σo
pq(X;p, f, θ) and dpq are, respectively, the calculated

and measured backscattering coefficients of the area at the
frequency f and observation angle θ for pq polarization, where
pq∈{hh, vv, hv}. However, we only use the HH and VV chan-
nels in this paper due to the existing calibration uncertainties in
the HV channel data. The vector X denotes the unknown pa-
rameters, namely [a b c]T . Every other parameter necessary to
characterize a radar pixel is assumed known and is represented
in the vector p. Section VI briefly describes these parameters.

The method of simulated annealing uses an analogy between
the unknown parameters in the optimization problem and par-
ticles in the annealing process of solids. These particles are
distributed randomly in the liquid phase at a high temperature.
If cooling happens slowly enough, at each temperature T , the
solid reaches thermal equilibrium, which is characterized by the
Boltzmann distribution [36]. As the temperature decreases,
the distribution concentrates on lower energy, and finally, when
the temperature approaches zero, the only state that has a
nonzero probability is the minimum energy state. In an op-
timization problem, the cost function and configurations of
the model parameters are analogous to energy and different
states of a solid, respectively. In an optimization algorithm
based on simulated annealing, a small randomly generated
perturbation is applied to the current model parameters X.
The new parameters are then used to calculate a new estimate
of the backscattering coefficients, hence a new value for the
cost function. If the cost function decreases, i.e., ΔL ≤ 0, the
new state is accepted; otherwise, it is accepted with probability
e−ΔL/T , where T is an inversion parameter referred to as
temperature. This rule, referred to as the Metropolis criterion,
is used at a sequence of decreasing temperatures. The simulated
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Fig. 6. Outline of the simulated annealing algorithm used in this paper.
Step length is adjusted NT times at each temperature before the temperature
is reduced. The current state at each step length adjustment is denoted by
X2,X3, . . . ,XNT+1.

annealing algorithm implemented in this paper is based on the
work by Corana et al. [35]. We start from an initial guess, an
initial temperature, and an initial step length vector. A random
move is generated sequentially along each coordinate direction.
The trial point is either accepted or rejected according to the
Metropolis criterion. This set of sequential perturbations is
repeated Ns times. The step length is then adjusted according
to the step length adjustment rule of the Corana et al. algorithm,
and the iteration continues until the number of step length
adjustments reaches NT . The temperature is reduced at this
point by Tnew = RTTold, and the iteration continues at the
new temperature starting from the current optimal point. This
procedure is illustrated in Fig. 6, where the current state at
each step length adjustment is denoted by X2,X3, . . . ,XNT+1.
Note that the first step length adjustment in each chain happens
at X2 and the last one happens at XNT+1, which is also the
last accepted point of the corresponding chain. The inversion
process stops when the cost function value becomes smaller
than a value denoted by δ, i.e., L ≤ δ, when the number of
forward function evaluations reaches a certain number, or when
the algorithm converges to local minima for a certain number
of times. (See [35] and [10] for more details on the inversion
algorithm.)

Simulated annealing is a powerful global optimization tech-
nique that is capable of finding the global minimum hidden
among many local minima. This method, like other global
methods and unlike local optimization techniques, is insensitive
to the initial guess, making it suitable for soil moisture retrieval.
The potential of other global optimization methods such as
the genetic algorithm and particle swarm can be studied and
explored for the purpose of subsurface sensing. However, we
have chosen to use simulated annealing in this paper because
this method has proved powerful in an inversion problem asso-
ciated with layered structures [10]. The study of other global
techniques in the context of subsurface sensing can be the
subject of another article.

To calculate the forward solution, we need the radar look an-
gle, frequency, vegetation parameters, and soil texture informa-
tion, all available as discussed in Section VI. We model the soil
as a layered dielectric structure where the depth (or location)
of the boundary of each modeled layer is calculated from the

index number of that layer and the thickness of the overlying
layers. The soil moisture of each layer is calculated from mv =
az2 + bz + c, given the depth z and the current state of the
polynomial coefficients a, b, and c. The texture of each layer
is chosen depending on the location of its boundary within
the actual soil layers. Soil texture properties (i.e., bulk density,
and sand, silt, and clay densities) of the actual soil layers are
based on the Soil Survey Geographic (SSURGO) database from
which the actual number of soil layers and their thicknesses are
available [37]. Finally, given the soil moisture and texture of
each layer, the soil mixture model by Peplinski et al. is used to
calculate the dielectric constant of that layer [38], [39].

The number of modeled soil layers and their thicknesses
along with the simulated annealing parameters are chosen
empirically based on the required accuracy and reasonableness
of computational cost, and after extensive simulations using
both synthetic and real radar data. The synthetic data inver-
sion, described in Section VII-A, is mainly used to validate
the mechanics of the inversion algorithm and to choose the
appropriate simulated annealing parameters (such as the chain
length, initial temperature, and stopping criterion), consider-
ing the limitations imposed by the available computational
resources. These parameters are in turn used in a series of
real data inversion (at the pixel where in situ soil moisture
data are available) to choose the appropriate constraints on the
unknown coefficients, number of layers, and their thicknesses,
considering the retrieval depth preference (not requirement) for
the Level 4 products. In this paper, we have used 11 layers with
a thickness of 5 cm for each (i.e., retrieval depth of 50 cm) in
the synthetic data inversion (see Section VII-A) and 20 layers
with a thickness of 5 cm for each (i.e., retrieval depth of 95 cm)
in the real data inversion (see Section VII-B).

We should mention that the unknown coefficients a, b, and
c have different impacts on the radar response. For example,
the coefficient c is the surface moisture (mv(0)=c); therefore,
it will have more impact on the radar response when the soil
has a wetter surface and drier depths, after a rain for example.
On the other hand, the coefficient a determines the shape of
the profile for deeper depths (as it multiplies z2); therefore, it
will have more impact on the radar response when we have drier
surface and wetter depths. However, these different sensitivities
do not make the optimization problem well posed because there
are two data points (i.e., HH and VV channels) versus three
unknowns, causing the problem to possibly have more than one
global minimum, even if no noise contaminates the data. By
imposing constraints on the coefficients based on in situ soil
moisture data, we can mitigate the ill-conditioning of the prob-
lem and solve it successfully. For the real radar data inversions
in this paper, and guided by available in situ soil moisture data,
the coefficients have been constrained as −3 ≤ a ≤ 3, −1 ≤
b ≤ 1, and 0 ≤ c ≤ 0.2. For synthetic data inversion and to
study the behavior of the inversion algorithm, we have relaxed
the constraints on b and c as −3 ≤ b ≤ 3, and 0 ≤ c ≤ 0.5.

VI. ANCILLARY DATA LAYERS AND SITE DESCRIPTION

Polarimetric P-band radar backscattering coefficients for
each AirMOSS site are delivered by JPL at resolutions of
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Fig. 7. Mosaicked radar image of the AirMOSS site in Arizona from October
23, 2012 for HH polarization. The values are in decibels. The blue area, i.e.,
−50 dB, is the image background.

Fig. 8. RGB image of the radar backscatter over the AirMOSS site in Arizona
from October 23, 2012. (Red: HH, Green: HV, Blue: VV).

0.5 and 3 arcseconds. The data are acquired by flying over
an effective swath of approximately 25 km by 100 km. The
effective swath is composed of several subswaths flown as
separate flight lines. Each flight line covers a range of local
incidence angles from approximately 25◦ to 55◦. Fig. 7 shows
an example of the mosaicked radar image for HH polarization at
3-arcsecond resolution from October 23, 2012, 5:30 A.M. over
the AirMOSS site in Arizona, whereas Fig. 8 shows an RGB
image of the radar backscatter.

The information necessary to characterize the pixels and
their vegetation and soil geometry stems from readily available
ancillary data used by the inversion algorithm to calculate the
output of the forward model. The incidence angle and the
slope of each pixel are included in the radar data at the same
resolution. To generate the slope map, the digital elevation
model (DEM) from the Shuttle Radar Topography Mission
(SRTM) is used during the radar data processing [40]. For
land cover type within the continental U.S., we use the most
recent land cover map from the National Land Cover Database
(NLCD) from the year 2006 [41]. For sites outside of the U.S.,
GlobCover data from the ESA GlobCover project are used
[42]. The vegetation parameterization is based on land cover
type only. For each land cover type, a standardized vegetation
parameterization is determined based on data collected in the
field. These data include vegetation geometric parameters such
as height, Diameter at Breast Height (DBH), branch lengths,
branch densities, branch diameters, leaf properties, and stem
and branch dielectric constants. The soil roughness and tem-
perature are determined based on field measurements, whereas
other soil information is available from the SSURGO database

TABLE I
VEGETATION PARAMETERS OF A TYPICAL

GRASSLAND PIXEL IN WALNUT GULCH

for the U.S. and from the Harmonized World Soil Database
produced by the International Institute for Applied Systems
Analysis (IIASA) for sites outside the U.S. [43]. The param-
eterization is validated by comparing the output of the forward
model against radar data over several pixels within the same
scene.

All ancillary data layers are postprocessed to a consistent
1 arcseconds (or �30 m) and then 3 arcseconds (or �90 m)
resolution. The handling and processing of ancillary data is an
involved process with many details that are beyond the scope
of this paper. The data handling and processing strategy that
enables large-scale RZSM estimation will be reported in a
separate paper.

The study site we refer to as Walnut Gulch in this paper
is located within the USDA-ARS Walnut Gulch Experimental
Watershed near Tombstone, AZ. The dominant vegetation types
within the study areas are grassland and shrubland. For the
September 2012 flights, Kendall was selected as the ground
sampling site for grassland, and Lucky Hills was selected as the
ground sampling site for shrubland. Both Kendall and Lucky
Hills are flux tower sites and have been monitored continuously
for more than a decade. During overflight days, soil moisture
and vegetation sampling was performed at both sites. For the
October 2012 flights, the Empire Ranch study site was added
to conduct more dedicated soil moisture sampling in shrubland.
The September flight was conducted during the ending of the
watershed wet season, and the October flight was during the
beginning of its dry season, hence covering a range of soil
moisture conditions. The topography of the sites is generally
hilly with small slopes (smaller than 5◦). There are often
obvious trenches due to water flow during the wet season. The
soil is hard and rocky, which limited the depth of moisture
sampling and the number of samples that were collected.

The soil and vegetation parameters are typical parameters of
the pixels in Walnut Gulch and have been measured directly
in the field in support of the AirMOSS field campaigns. For
locations where field data are not available, data from similar
sites are used. Tables I–III summarize the vegetation parameters
of the grassland, shrubland, and evergreen pixels, respectively.
The soil texture parameters for all pixels and all depths are as-
signed as S = 0.643, C = 0.106, and ρb = 1.55 g/cm3, where
S, C, and ρb are, respectively, sand fraction, clay fraction, and
bulk density of the soil. The look angle ranges from � 30◦ to �
52◦. These values are based on locations of such pixels within
the AirMOSS radar swaths. The frequency is 430.3 MHz.
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TABLE II
VEGETATION PARAMETERS OF A TYPICAL

SHRUBLAND PIXEL IN WALNUT GULCH

TABLE III
VEGETATION PARAMETERS OF A TYPICAL

EVERGREEN PIXEL IN WALNUT GULCH

VII. INVERSION RESULTS AND DISCUSSION

We apply the inversion algorithm described in Section V to
synthetic radar data to show the applicability of our method
and to adjust the inversion algorithm parameters (such as the
chain length, initial temperature, and stopping criterion). The
algorithm is then applied to some real radar data (at the flux
tower pixels where in situ soil moisture data are available) to
choose the appropriate number of layers, their thicknesses, and
constraints on the unknown coefficients. Finally, the inversion
algorithm is applied to AirMOSS radar data acquired over
the AirMOSS site in Arizona, including the Walnut Gulch
Experimental Watershed. We would like to add that, given the
parameters in Table III, the total one-way attenuation in the
branch and trunk layers of an evergreen pixel in the site would
be less than 1 dB for HH polarization, for example. This value is
well above the system’s equivalent sigma nought of � −40 dB.
Therefore, retrieval accuracy is not expected to be heavily
affected by attenuation in the branch and trunk layers.

A. Inversion of Soil-Moisture Profile Using Synthetic Data

To validate the mechanics and implementation of the in-
version method and to choose an appropriate set of inversion
parameters, we first apply the method to synthetic data and then
to nominal (but arbitrary) soil moisture profiles. The synthetic
data used here are simulated with the model of [34], which is
briefly explained in Section V. The radar data are assumed to
have the following model:

σn
pq = σpq + r (3)

where σn
pq represents the measured radar signal (in decibels),

and σpq is the error-free radar signal (in decibels) simulated
with the forward model. The quantity r is a random number

uniformly distributed between −1 and 1. Considering the cali-
bration errors explained in Section II, r would be an overesti-
mation of the calibration error. This overestimation is necessary
to account for errors in the ancillary data and the scattering
model. We will see in Section VII-B that the RMSE figures
in this analysis are overestimated of the errors present in the
retrieval results when real radar data are used.

We demonstrate the inversion method using two different
pixels, namely bare soil and shrubs. The parameters char-
acterizing pixels are from Walnut Gulch data described in
Section VI. However, the moisture profiles used in the simu-
lations are the same profiles shown in Fig. 2(b). We have used
11 layers with a thickness of 5 cm for each to discretize the
moisture profile.

The inversion algorithm is applied to 300 realizations of the
perturbed data modeled with (3), and the PDF of the RMSE
between the retrieved and actual profiles is calculated. Fig. 9
shows these results. The average RMSEs for all profiles are
shown, which we reiterate are overestimation of the errors
observed with real radar data. We should mention that the PDF
is plotted by smoothing the histogram of the output, resulting
in negative RMSE for some of the realizations.

B. Inversion of Soil-Moisture Profile From AirMOSS Data

We use the AirMOSS data from three different dates, namely
September 20, October 23, and October 29, 2012, acquired over
the Arizona site. The flown area comprises hundreds of thou-
sands of 3-arcsecond pixels. Specifically, the radar images from
September 20, October 23, and October 29, 2012 contain, re-
spectively, 515 867, 364 772, and 421 700 pixels. However, due
to several masks that we apply to the radar data, only 411 337,
240 859, and 307 946 are enabled for inversion, respectively.
The 3-arcsecond pixels that are disabled (or masked out) are
the pixels that: 1) are classified by the NLCD as water, ice/
snow, developed space (open space, low/medium/high inten-
sity), woody wetlands, or any of the wetland classes; or 2) have
a slope of more than 10◦. Currently, some additional pixels are
masked out due to nonexisting SSURGO data. In the future,
we will use soil products that are gap filled with the State
Soil Geographic (STATSGO) data [44]. Moreover, pixels with
bedrock, water features, river washes, rough broken land, rocky
outcrop, or lava fields, which have no soil characteristics, are
also masked out.

The simulated annealing algorithm is rather computationally
expensive, because it often requires thousands of forward-
model runs per pixel. However, since each pixel can be inverted
independently, it is possible to retrieve the soil moisture profile
coefficients for the entire image in a reasonable length of time
by dividing the image into several segments and performing the
processing on a high-performance computing cluster. Currently,
we are utilizing two clusters, namely the High Performance
Computing and Communications (HPCC) supercomputer clus-
ter at the University of Southern California and the High-
End Computing Capability (HECC) cluster at the NASA Ames
Research Center. Each utilized HPCC node has two 2.3-GHz
Dodecacore AMD Opteron processors with 48 GB of memory.
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Fig. 9. Of the RMSE between the retrieved and actual profiles for two typical moisture profiles shown in Fig. 2(b) and two typical pixels (i.e., barren and
shrubland) in the Walnut Gulch site using synthetic radar data. The average RMSEs are shown on the plots. (a) Dry profile. (b) Wet profile.

Fig. 10. Map of soil moisture of the AirMOSS site in Arizona at four sample
depths of 0, 10, 30, and 75 cm estimated by the inversion algorithm for
September 20, 2012. The gray area, i.e., 0 m3/m3, is the image background.

Fig. 11. Map of soil moisture of the AirMOSS site in Arizona at four sample
depths of 0, 10, 30, and 75 cm estimated by the inversion algorithm for October
23, 2012. The gray area, i.e., 0 m3/m3, is the image background.
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Fig. 12. Map of soil moisture of the AirMOSS site in Arizona at four sample
depths of 0, 10, 30, and 75 cm estimated by the inversion algorithm for October
29, 2012. The gray area, i.e., 0 m3/m3, is the image background.

Each utilized HECC node has two 3-GHz Quadcore Intel Xeon
processors with 8 GB of memory.

Figs. 10–12 show the soil moisture maps of the AirMOSS
site in Arizona at four sample depths of 0, 10, 30, and 75 cm
for September 20, October 23, and October 29, 2012. For this
set of inversions, we have used 20 layers, with a thickness of
5 cm for each, to discretize the unknown profile, making the
results valid up to 95 cm.

To validate the inversion results, we use the data collected
by USDA from probes originally installed in support of the
MOSS project in 2002–2004. These probes are near the Lucky
Hills Shrubland and Kendall Grassland flux towers within the
watershed. Multiple soil moisture profiles are installed at each
location, and the probes along each profile are at various depths.
For example, one profile has probes at the depths of 5, 15,
and 38 cm, whereas another profile probes the soil moisture
at the depths of 0, 5, 15, 30, 75, and 100 cm. The validation
plots below show these various depths for the profiles. The

probes collect data every 30 min throughout the day and year.
We have compared the retrieved soil moisture profiles against
the available soil moisture data for the three dates mentioned
earlier at both Lucky Hills Shrubland and Kendall Grassland.
Figs. 13–15 show these comparisons, in which RMSE has
been calculated over the depths smaller than 95 cm. The data
collected by probes are sometimes corrupted or invalid (i.e.,
nonphysical) due to hardware or recording problems. There-
fore, the validation results are only shown for valid in situ
data. For September 20, 2012, the average RMSEs over all
probes for Lucky Hills Shrubland and Kendall Grassland are
0.037 and 0.095 m3/m3, respectively, and 0.060 m3/m3 over
both areas. For October 23, the retrieved profile is generally
underestimating the soil moisture, and the average RMSEs over
all probes for Lucky Hills Shrubland and Kendall Grassland are
0.070 and 0.046 m3/m3, respectively, and 0.064 m3/m3 over
both areas. For October 29, the retrieved profile is generally
overestimating the soil moisture, and the average RMSEs over
all probes for Lucky Hills Shrubland and Kendall Grassland are
0.105 and 0.064 m3/m3, respectively, and 0.099 m3/m3 over
both areas. The average RMSE over all profiles, all dates, and
both sites is 0.075 m3/m3. The breakdown of these results is
summarized in Table IV.

The validation plots suggest that we should investigate the
level of confidence in the retrieval results for different depth
thresholds. We examine two thresholds, namely 50 and 30 cm.
For each date, we calculate the RMSE over all profiles in
both sites, i.e., Lucky Hills Shrubland and Kendall Grassland.
Table V shows the summary. The accuracy in the retrieval
increases if RMSE is calculated based on points closer to the
surface, indicating more confidence in the retrieval for such
points. It should be mentioned that, in the calculation of RMSE,
we have not removed any biases in the retrieved soil moisture
values, and the RMSE is calculated as

RMSE =

√∑N
i=0(mv − m̂v)2

N
(4)

where mv is the measured soil moisture, m̂v is the estimated
soil moisture, and N is the total number of probes used in the
calculation of the RMSE. The possible radar calibration errors,
inaccuracies in vegetation parameterization and modeling, sur-
face roughness assumptions, and inaccuracies in the scattering
and inversion models have contributed to the retrieval errors.
Investigation and reduction of these errors is beyond the scope
of this paper. With longer term data sets over the course of
the AirMOSS mission, we would be able to reduce the afore-
mentioned sources of uncertainty and to determine any site-
dependent or uniform bias in the retrieved soil moisture values.

VIII. SUMMARY AND CONCLUSION

We presented a comprehensive description of the retrieval
method used for mapping the RZSM in several AirMOSS
sites. Brief overview of ancillary data and the study site was
presented. Since the number of AirMOSS SAR observations
is limited, to estimate deep soil moisture, rather than modeling
soil moisture profile with several layers with unknown volumet-
ric moisture contents, we modeled the unknown soil moisture
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Fig. 13. Comparison between the retrieved and measured profiles on September 20, 2012 at 6:30 A.M. in (a) Walnut Gulch Lucky Hills Shrubland and (b) Walnut
Gulch Kendall Grassland. The RMSE is calculated based on depths smaller than 95 cm. For Kendall Grassland, only two profiles reported valid data on this date.

Fig. 14. Comparison between the retrieved and measured profiles on October 23, 2012 at 5:30 A.M. in (a) Walnut Gulch Lucky Hills Shrubland and (b) Walnut
Gulch Kendall Grassland. The RMSE is calculated based on depths smaller than 95 cm. For Kendall Grassland, only two profiles reported valid data on this date.

Fig. 15. Comparison between the retrieved and measured profiles on October 29, 2012 at 6:00 A.M. in (a) Walnut Gulch Lucky Hills Shrubland and (b) Walnut
Gulch Kendall Grassland. The RMSE is calculated based on depths smaller than 95 cm. For Kendall Grassland, only one profile reported valid data on this date.

profile with a second-order polynomial with three coefficients.
These coefficients were estimated with the simulated annealing
method where the backscattering coefficients of the radar
pixel, hence the cost function, were calculated using a single-
species discrete radar scattering model. The ancillary data
characterizing each pixel, i.e., vegetation and soil parameters,
are acquired from several sources and are handled and prepared

for the inversion algorithm in an involved process that will be
detailed in a separate paper. Considering the required accuracy
and reasonableness of the computational cost and guided by
in situ field observations from several sites and prior field
campaigns, the inversion algorithm parameters, including the
number and thickness of the modeled soil layers’ that discretize
the unknown profile, were chosen empirically after extensive
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TABLE IV
BREAKDOWN OF RMSE FOR WALNUT GULCH SITES

TABLE V
RMSE FOR WALNUT GULCH (VARIOUS DEPTH THRESHOLDS)

simulations using synthetic and real radar data. We applied
the estimation algorithm to the radar data acquired over the
AirMOSS site in Arizona from September and October of
2012. The retrieval accuracy was quantified based on the
RMSE between estimated and measured profiles at locations
within the Walnut Gulch Experimental Watershed where soil
moisture probes are installed and soil moisture is monitored
throughout the year. The validation results showed accuracy
ranging from 0.041 to 0.099 m3/m3 while confirming the
intuitive notion that the accuracy decreases as depth increases.
The profiles used for validation are from a fairy dry season in
Walnut Gulch and so are the accuracy conclusions. We showed
in Section III that the second-order polynomial representation
is still a good assumption for wet profiles. Nevertheless,
we expect that the second-order polynomial would be more
accurate in dry conditions. The validation of the algorithm
will be extended to wet conditions in the future pending radar
data from wet seasons. The existing uncertainty in the retrieval
results are associated with radar calibration errors, vegetation
parameterization and modeling errors, surface roughness
assumptions, and inaccuracies in the scattering and inversion
models. We should also mention that no biases have been
removed in the calculation of RMSE. The biases present in
the retrieved values of soil moisture can be due to the in situ
probes, radar calibration, vegetation parameterization, forward-
model inaccuracies, and the bias in the inversion algorithm.
To determine whether a bias exists and whether this bias is
site dependent, we would need to recalculate these errors with
longer-term data sets over the course of the AirMOSS mission.
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