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Abstract

For positive integers u and v, let Lu =

[
1 0
u 1

]
and Rv =

[
1 v
0 1

]
. Let Gu,v

be the group generated by Lu and Rv. The membership problem for

Gu,v asks the following question: given a 2-by-2 matrix M =

[
a b
c d

]
,

is there a relatively straightforward method for determining if M is a
member of Gu,v? In the case where u = 2 and v = 2, Sanov was
able to show that simply checking some divisibility conditions for a, b,
c, and d is enough to make this determination. In a previous paper,
the authors answered this question by finding a characterization of
matrices M in Gu,v when u, v ≥ 3 in terms of the short continued
fraction representation of b/d. By modifying our previous work, we
are able to extend our previous result to the case where u, v ≥ 2 with
uv ̸= 4.

Background

For positive integers u and v, let Lu =

[
1 0
u 1

]
, Rv =

[
1 v
0 1

]
, and Gu,v be

the group generated by Lu and Rv. Furthermore, using the notation
from [1], let

Gu,v =

{[
1 + uvn1 vn2

un3 1 + uvn4

]
∈ SL2(Z) : (n1, n2, n3, n4) ∈ Z4

}
.

Note that Gu,v is a group and that Gu,v ⊆ Gu,v when u, v ≥ 2 [2, Propo-
sition 1.1].
Given a rational number q, if there exist integers q0, q1, . . . , qr (referred
to as partial quotients) such that

q = q0 +
1

q1 +
1

q2 +
. . . +

1

qr

,

then we refer to such an identity as a continued fraction representa-
tion of q and denote it by [q0, q1, . . . , qr]. We refer to the unique such
representation where qi ≥ 1 for 0 < i < r and qr > 1 for r > 0 as the
short continued fraction representation of q.
In [1], Esbelin and Gutan gave the following clear characterization of
members of Gu,v in terms of related continued fraction representa-
tions.

Theorem 1 (Esbelin and Gutan [1]) Suppose that M =

[
a b
c d

]
∈ Gk,k

for some k ≥ 2. Then M ∈ Gk,k if and only if at least one of the
rationals c/a and b/d has a continued fraction expansion having all
partial quotients in kZ.
In [2], we showed that Theorem 1 could be modified and written in
terms of the short continued fraction representations of either c/a or
b/d, when u, v ≥ 3. In particular, we developed a simple algorithm
that, when applied to the short continued fraction representation of
b/d, determines whether or not the sought after continued fraction
expansion in Theorem 1 exists.

Preliminaries

Let A =
⋃∞

r=0(Z× Zr
̸=0). We denote an element of A by Jq0, q1, q2, . . . , qrK. Let

−Jq0, q1, q2, . . . , qrK := J−q0,−q1,−q2, . . . ,−qrK.

For any nonnegative integers m and n, let

Jq0, q1, q2, . . . , qmK ⊕ Jp0, p1, p2, . . . , pnK :=


Jq0, q1, q2, . . . , qm, p0, p1, p2, . . . , pnK

if p0 ̸= 0,

Jq0, q1, q2, . . . , qm + p1, p2, . . . , pnK

otherwise.

Let

A0 = {Jq0, q1, q2, . . . , qrK ∈ A : [qi, . . . , qr] ̸= 0 when 0 < i < r},
A1 = {Jq0, q1, q2, . . . , qrK ∈ A0 : qi ≥ 1

when 0 < i < r, and qr > 1 when r > 0}, and
A2 = {Jq0, q1, q2, . . . , qrK ∈ A0 : |qi| > 1 when 0 < i ≤ r}.

Define the function C : Q → A1 by

C(x) = Jx0, x1, x2, . . . , xrK

if [x0, x1, x2, . . . , xr] is the short continued fraction representation of x. We say
that Jq0, q1, q2, . . . , qrK ∈ A satisfies the (u, v)-divisibility property if v|qi when i is
even and u|qi when i is odd.
Define fu,v : A1 → A2 recursively by

fu,v(Jq0, q1, q2, . . . , qrK)

=



Jq0K if r = 0,

Jq0 + 1K ⊕−fv,u(Jq2 + 1, q3, . . . , qrK) if v ∤ q0 and q1 = 1,

Jq0 + 1K ⊕ fv,u(J−2, q2 + 1, q3, . . . , qrK) if v ∤ q0, q1 = 2, and r > 1,

Jq0 + 1,−2K if v ∤ q0, q1 = 2, and r = 1,

Jq0K ⊕ fv,u(Jq1, q2, . . . , qrK) otherwise.

Define gu,v : A2 → A1 recursively by

gu,v(Jq0, q1, q2, . . . , qrK)

=



Jq0K if r = 0,

Jq0 − 1, 1K ⊕ gv,u(−Jq1 + 1, q2, . . . , qrK)

if either q1 < 0 and u ̸= 2, or q1 < −2 and u = 2,

Jq0 − 1, 2K ⊕ gv,u(Jq2 − 1, q3, . . . , qrK)

if q1 = −2, r > 1, and u = 2,

Jq0 − 1, 2K

if q1 = −2, r = 1, and u = 2,

Jq0K ⊕ gv,u(Jq1, q2, . . . , qrK) otherwise.

Results

Proposition 2 Let Jq0, q1, q2, . . . , qrK ∈ A2. If Jq0, q1, q2, . . . , qrK sat-
isfies the (u, v)-divisibility property, then

fu,v(gu′,v′(Jq0, q1, q2, . . . , qrK)) = Jq0, q1, q2, . . . , qrK.

for any positive integers u′, v′ ≥ 2 with u′v′ ̸= 4.

Proposition 3 For a matrix M =

[
a b
c d

]
∈ Gu,v, (fu,v ◦ C)(c/a) sat-

isfies the (v, u)-divisibility property if and only if (fu,v ◦C)(b/d) sat-
isfies the (u, v)-divisibility property.

Proposition 3 allows us to state our main theorem below in terms
of b/d, ignoring c/a altogether.

Theorem 4 For integers u, v ≥ 2, with uv ̸= 4, and a matrix M =[
a b
c d

]
∈ Gu,v, M ∈ Gu,v if and only if (fu,v ◦ C) (b/d) satisfies the

(u, v)-divisibility property.

A careful reading of Theorem 4 shows that our method allows one
to determine the exponents in the alternating product representa-
tion of M , should it be the case that M ∈ Gu,v.

An example

(f2,3 ◦ C)

(
12975

1351

)
= f2,3(J9, 1, 1, 1, 1, 9, 2, 2, 5K)

= J9K ⊕ f3,2(J1, 1, 1, 1, 9, 2, 2, 5K)

= J9K ⊕ (J2K ⊕−f2,3(J2, 1, 9, 2, 2, 5K))

= J9K ⊕ (J2K ⊕−(J3K ⊕−f3,2(J10, 2, 2, 5K)))

= J9K ⊕ (J2K ⊕−(J3K ⊕−(J10K ⊕ f2,3(J2, 2, 5K))))

= J9K ⊕ (J2K ⊕−(J3K ⊕−(J10K ⊕ (J3K⊕
f3,2(J−2, 6K)))))

= J9K ⊕ (J2K ⊕−(J3K ⊕−(J10K ⊕ (J3,−2K⊕
f2,3(J6K)))))

= J9K ⊕ (J2K ⊕−(J3K ⊕−(J10K ⊕ (J3,−2K⊕
J6K))))

= J9, 2,−3, 10, 3,−2, 6K,

which does satisfy the (2, 3)-divisibility property, as desired, and
encodes the exponents in the product representation of M =[
2401 12975
250 1351

]
= R3

3L2R
−1
3 L5

2R3L
−1
2 R2

3.
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