Abstract

For positive integers u and v, let $L_{u}=\left[\begin{array}{ll}1 & 0 \\ u & 1\end{array}\right]$ and $R_{v}=\left[\begin{array}{ll}1 & v \\ 0 & 1\end{array}\right]$. Let $G_{u, v}$ be the group generated by L_{u} and R_{v}. The membership problem for $G_{u, v}$ asks the following question: given a 2-by-2 matrix $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, s there a relatively straightforward method for determining if M is a member of $G_{u v}$? In the case where $u=2$ and $v=2$, Sanov was able to show that simply checking some divisibility conditions for a, b, c, and d is enough to make this determination. In a previous paper the authors answered this question by finding a characterization of matrices M in $G_{u, v}$ when $u, v \geq 3$ in terms of the short continued raction representation of b / d. By modifying our previous work, we are able to extend our previous result to the case where $u, v \geq 2$ with $u v \neq 4$.

Background

For positive integers u and v, let $L_{u}=\left[\begin{array}{ll}1 & 0 \\ u & 1\end{array}\right], R_{v}=\left[\begin{array}{ll}1 & v \\ 0 & 1\end{array}\right]$, and $G_{u, v}$ be the group generated by L_{u} and R_{v}. Furthermore, using the notation from [1], let

$$
\mathscr{G}_{u, v}=\left\{\left[\begin{array}{cc}
1+u v n_{1} & v n_{2} \\
u n_{3} & 1+u v n_{4}
\end{array}\right] \in S L_{2}(\mathbb{Z}):\left(n_{1}, n_{2}, n_{3}, n_{4}\right) \in \mathbb{Z}^{4}\right\} .
$$

Note that $\mathscr{G}_{u, v}$ is a group and that $G_{u, v} \subseteq \mathscr{G}_{u, v}$ when $u, v \geq 2$ [2, Propo sition 1.1].
Given a rational number q, if there exist integers $q_{0}, q_{1}, \ldots, q_{r}$ (referred to as partial quotients) such that

en we refer to such an identity as a continued fraction representa ion of q and denote it by $\left[q_{0}, q_{1}, \ldots, q_{r}\right]$. We refer to the unique such representation where $q_{i} \geq 1$ for $0<i<r$ and $q_{r}>1$ for $r>0$ as the short continued fraction representation of q.
In [1], Esbelin and Gutan gave the following clear characterization of members of $G_{u, v}$ in terms of related continued fraction representa tions
Theorem 1 (Esbelin and Gutan [1]) Suppose that $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathscr{G}_{k, k}$ for some $k \geq 2$. Then $M \in G_{k, k}$ if and only if at least one of the rationals c / a and b / d has a continued fraction expansion having all partial quotients in $k \mathbb{Z}$.
In [2], we showed that Theorem 1 could be modified and written in erms of the short continued fraction representations of either c / a or b / d, when $u, v \geq 3$. In particular, we developed a simple algorithm that, when applied to the short continued fraction representation o b / d, determines whether or not the sought after continued fraction expansion in Theorem 1 exists.

$$
-\llbracket q_{0}, q_{1}, q_{2}, \ldots, q_{r} \rrbracket:=\llbracket-q_{0},-q_{1},-q_{2}, \ldots,-q_{r} \rrbracket .
$$

For any nonnegative integers m and n, let

$$
\llbracket q_{0}, q_{1}, q_{2}, \ldots, q_{m} \rrbracket \oplus \llbracket p_{0}, p_{1}, p_{2}, \ldots, p_{n} \rrbracket:=\left\{\begin{array}{c}
\llbracket q_{0}, q_{1}, q_{2}, \ldots, q_{m}, p_{0}, p_{1}, p_{2}, \ldots, p_{n} \rrbracket \\
\text { if } p_{0} \neq 0, \\
\llbracket q_{0}, q_{1}, q_{2}, \ldots, q_{m}+p_{1}, p_{2}, \ldots, p_{n} \rrbracket \\
\text { otherwise. }
\end{array}\right.
$$

Let

$$
\begin{aligned}
& A_{0}=\left\{\llbracket q_{0}, q_{1}, q_{2}, \ldots, q_{r} \rrbracket \in A:\left[q_{i}, \ldots, q_{r}\right] \neq 0 \text { when } 0<i<r\right\}, \\
& A_{1}=\left\{\llbracket q_{0}, q_{1}, q_{2}, \ldots, q_{r} \rrbracket \in A_{0}: q_{i} \geq 1\right. \\
&\left.\quad \text { when } 0<i<r, \text { and } q_{r}>1 \text { when } r>0\right\}, \text { and } \\
& A_{2}=\left\{\llbracket q_{0}, q_{1}, q_{2}, \ldots, q_{r} \rrbracket \in A_{0}:\left|q_{i}\right|>1 \text { when } 0<i \leq r\right\} .
\end{aligned}
$$

Define the function $C: \mathbb{Q} \rightarrow A_{1}$ by

$$
C(x)=\llbracket x_{0}, x_{1}, x_{2}, \ldots, x_{r} \rrbracket
$$

if $\left[x_{0}, x_{1}, x_{2}, \ldots, x_{r}\right]$ is the short continued fraction representation of x. We say that $\llbracket q_{0}, q_{1}, q_{2}, \ldots, q_{r} \rrbracket \in A$ satisfies the (u, v)-divisibility property if $v \mid q_{i}$ when i is even and $u \mid q_{i}$ when i is odd
Define $f_{u, v}: A_{1} \rightarrow A_{2}$ recursively by

$$
\begin{aligned}
& f_{u, v}\left(\llbracket q_{0}, q_{1}, q_{2}, \ldots, q_{r} \rrbracket\right) \\
& = \begin{cases}\llbracket q_{0} \rrbracket & \text { if } r=0, \\
\llbracket q_{0}+1 \rrbracket \oplus-f_{v, u}\left(\llbracket q_{2}+1, q_{3}, \ldots, q_{r} \rrbracket\right) & \text { if } v \nmid q_{0} \text { and } q_{1}=1, \\
\llbracket q_{0}+1 \rrbracket \oplus f_{v, u}\left(\llbracket-2, q_{2}+1, q_{3}, \ldots, q_{r} \rrbracket\right) & \text { if } v \nmid q_{0}, q_{1}=2, \text { and } r>1, \\
\llbracket q_{0}+1,-2 \rrbracket & \text { if } v \nmid q_{0}, q_{1}=2 \text {, and } r=1, \\
\llbracket q_{0} \rrbracket \oplus f_{v, u}\left(\llbracket q_{1}, q_{2}, \ldots, q_{r} \rrbracket\right) & \text { otherwise. }\end{cases}
\end{aligned}
$$

Define $g_{u, v}: A_{2} \rightarrow A_{1}$ recursively by

$$
\begin{aligned}
& g_{u, v}\left(\llbracket q_{0}, q_{1}, q_{2}, \ldots, q_{r} \rrbracket\right) \\
& =\left\{\begin{array}{l}
\llbracket q_{0} \rrbracket \\
\llbracket q_{0}-1,1 \rrbracket \oplus g_{v, u}\left(-\llbracket q_{1}+1, q_{2}, \ldots, q_{r} \rrbracket\right) \\
\quad \text { if either } q_{1}<0 \text { and } u \neq 2, \text { or } q_{1}<-2 \text { and } u=2, \\
\llbracket q_{0}-1,2 \rrbracket \oplus g_{v, u}\left(\llbracket q_{2}-1, q_{3}, \ldots, q_{r} \rrbracket\right) \\
\text { if } q_{1}=-2, r>1, \text { and } u=2, \\
\llbracket q_{0}-1,2 \rrbracket \\
\text { if } q_{1}=-2, r=1, \text { and } u=2, \\
\llbracket q_{0} \rrbracket \oplus g_{v, u}\left(\llbracket q_{1}, q_{2}, \ldots, q_{r} \rrbracket\right)
\end{array}\right.
\end{aligned}
$$

$$
\text { if } r=0 \text {, }
$$

Results

Proposition 2 Let $\llbracket q_{0}, q_{1}, q_{2}, \ldots, q_{r} \rrbracket \in A_{2}$. If $\llbracket q_{0}, q_{1}, q_{2}, \ldots, q_{r} \rrbracket$ sat isfies the (u, v)-divisibility property, then

$$
f_{u, v}\left(g_{u^{\prime}, v^{\prime}}\left(\llbracket q_{0}, q_{1}, q_{2}, \ldots, q_{r} \rrbracket\right)\right)=\llbracket q_{0}, q_{1}, q_{2}, \ldots, q_{r} \rrbracket
$$

for any positive integers $u^{\prime}, v^{\prime} \geq 2$ with $u^{\prime} v^{\prime} \neq 4$.
Proposition 3 For a matrix $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathscr{G}_{u, v},\left(f_{u, v} \circ C\right)(c / a)$ sat isfies the (v, u)-divisibility property if and only if $\left(f_{u, v} \circ C\right)(b / d)$ sat isfies the (u, v)-divisibility property.
Proposition 3 allows us to state our main theorem below in terms of b / d, ignoring c / a altogether
Theorem 4 For integers $u, v \geq 2$, with $u v \neq 4$, and a matrix $M=$ $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathscr{G}_{u, v}, M \in G_{u, v}$ if and only if $\left(f_{u, v} \circ C\right)(b / d)$ satisfies the (u, v)-divisibility property.

A careful reading of Theorem 4 shows that our method allows one to determine the exponents in the alternating product representa tion of M, should it be the case that $M \in G_{u, v}$.

An example

$$
\begin{aligned}
\left(f_{2,3} \circ C\right)\left(\frac{12975}{1351}\right) & =f_{2,3}(\llbracket 9,1,1,1,1,9,2,2,5 \rrbracket) \\
& =\llbracket 9 \rrbracket \oplus f_{3,2}(\llbracket 1,1,1,1,9,2,2,5 \rrbracket) \\
& =\llbracket 9 \rrbracket \oplus\left(\llbracket 2 \rrbracket \oplus-f_{2,3}(\llbracket 2,1,9,2,2,5 \rrbracket)\right) \\
& =\llbracket 9 \rrbracket \oplus\left(\llbracket 2 \rrbracket \oplus-\left(\llbracket 3 \rrbracket \oplus-f_{3,2}(\llbracket 10,2,2,5 \rrbracket)\right)\right) \\
& =\llbracket 9 \rrbracket \oplus\left(\llbracket 2 \rrbracket \oplus-\left(\llbracket \rrbracket \rrbracket \oplus-\left(\llbracket 10 \rrbracket \oplus f_{2,3}(\llbracket 2,2,5 \rrbracket)\right)\right)\right) \\
& =\llbracket 9 \rrbracket \oplus(\llbracket 2 \rrbracket \oplus-(\llbracket 3 \rrbracket \oplus-(\llbracket 10 \rrbracket \oplus(\llbracket 3 \rrbracket \oplus \\
& \left.\left.\left.\left.\quad f_{3,2}(\llbracket-2,6 \rrbracket)\right)\right)\right)\right) \\
& =\llbracket 9 \rrbracket \oplus(\llbracket 2 \rrbracket \oplus-(\llbracket 3 \rrbracket \oplus-(\llbracket 10 \rrbracket \oplus(\llbracket 3,-2 \rrbracket \oplus \\
& \left.\left.\left.\quad f_{2,3}(\llbracket 6 \rrbracket)\right)\right)\right) \\
= & \llbracket 9 \rrbracket \oplus(\llbracket 2 \rrbracket \oplus-(\llbracket 3 \rrbracket \oplus-(\llbracket 10 \rrbracket \oplus(\llbracket 3,-2 \rrbracket \oplus \\
& \llbracket 6 \rrbracket)))) \\
& =\llbracket 9,2,-3,10,3,-2,6 \rrbracket,
\end{aligned}
$$

which does satisfy the (2,3)-divisibility property, as desired, and encodes the exponents in the product representation of $M=$ $\left[\begin{array}{cc}2401 & 12975 \\ 250 & 1351\end{array}\right]=R_{3}^{3} L_{2} R_{3}^{-1} L_{2}^{5} R_{3} L_{2}^{-1} R_{3}^{2}$.

References

[1] Henri-Alex Esbelin and Marin Gutan. "On the membership problem for some subgroups of $S L_{2}(\mathbb{Z})^{\prime \prime}$. In: Ann. Math. Qué. 43.2 (2019), pp. 233-247.
[2] Sandie Han et al. "Subgroups of $S L_{2}(\mathbb{Z})$ characterized by certain continued fraction representations". In: Proc. Amer. Math. Soc. 148.9 (2020), pp. 3775 3786.

