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Abstract
We study direct and indirect excitons in Rydberg 
states in phosphorene freestanding (FS) and 
encapsulated by hBN monolayers, FS bilayer, and van 
der Waals (vdW) double-layer heterostructures, when 
the external magnetic field is applied perpendicular to 
the examined systems, within the effective mass 
approximation framework. By a numerical integration 
of the Schrödinger equation, we obtain binding 
energies of magnetoexcitons. The interaction potential 
between electron and hole in a monolayer is taken to 
be the Rytova-Keldysh (RK) potential while in bilayer 
and vdW heterostructures the interactions are 
described by both the RK and Coulomb potentials. 
The latter allows to address the role of screening in 
phosphorene. We report the energy contribution from 
the magnetic field to the binding energies of Rydberg 
states and diamagnetic coefficients (DMCs) and their 
strong dependence on electron and hole masses’ 
anisotropy along x and y directions. We show that the 
energy contribution and DMCs can be effectively 
tuned by varying the number of hBN layers that 
separate two phosphorene monolayers. 

Theoretical Model
Phosphorene has a unique topological structure such that 
electron and hole have asymmetric masses along x  
(armchair, AC) and y (zigzag, ZZ) directions. Along AC 
direction electron and hole masses are smaller than along 
ZZ direction. 
The Hamiltonian for electron-hole pair with anisotropic 
masses in the external magnetic field (ℏ = 𝑐 = 1):

where 𝑚!
", 𝑗 = 𝑥, 𝑦, i = 𝑒, ℎ correspond to the effective 

mass of the electron or hole in the x or y direction, 
respectively. 𝑉(|𝒓# − 𝒓$|) describes the electrostatic 
interaction between electron and hole. For direct excitons, 
the Rytova-Keldysh (RK) potential2,3 is used:

For indirect excitons in bilayer and vdW heterostructure, 
the RK and Coulomb potentials are used:

Where 𝜌% = 𝑥% + 𝑦% and 𝐷 = ℎ + 𝑁𝑙$&' , ℎ and 𝑙$&'
are phosphorene and hBN monolayers’ thicknesses, 
respectively.
The final Schrödinger equation for relative motion of 
the electron and hole with zero center-of-mass 
momentum has the form:
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Fig. 1 Schematic illustration of magnetoexcitons 
in phosphorene monolayers and heterostructures. 
(a) A direct magnetoexciton in a freestanding 
phosphorene monolayer. (b) A direct 
magnetoexciton in an encapsulated phosphorene 
monolayer. (c) An indirect magnetoexciton in a 
freestanding bilayer phosphorene heterostructure. 
(d) An indirect magnetoexciton in phosphorene van 
der Waals heterostructure.
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is plotted as a function of x and y. W(x, y) and x
and y are given in eV and nm, respectively. The 
potential is calculated at B = 30 T. The potential 
demonstrates the anisotropy of phosphorene.

Fig. 3 Diagrams of the energy levels of excitons at 
B = 0 T, and the contribution from magnetic field 
at B = 60 T. Data are given for FS and 
encapsulated by hBN phosphorene monolayers.
The graph shows the binding energy is dominated 
by ,& '! term, while ∆𝐸 is  dominated by ⁄& '" term.

Fig. 4 Dependencies of the energy contribution from the magnetic field to the binding 
energies of magnetoexcitons in states 1s, 2s, 3s, and 4s for FS (a) and encapsulated by hBN
(b) phosphorene monolayers on the squared magnetic field. The boundary dashed and solid 
curves correspond to the sets of masses 1 and set 3, respectively. The contributions for the sets 
of masses 2 and 4 fall within the shaded region.
The flip of upper and lower bound in state 4s is not an artifact, but the result of the input mass 
parameters.


