

Photonic switching devices by means of polariton redistribution in TMDC's:

A comparative analysis between Ψ-shaped and Y-shaped channel guides

19th Annual City Tech Poster Session November 18, 2021 Patrick Serafin¹, German V Kolmakov¹

¹ Physics, NYC College of Technology, CUNY, Brooklyn, NY

Dipolaritons

• Dipolaritons are a three way superposition of direct exciton, indirect exciton, and cavity photon.

Photonic Switching

Y-Shaped Channel

• θ_0 = 90°, **F** =2.0eV/mm, θ_E = 60 °

• Performance, Q = $\frac{J_{up}}{J_{low} + J_{up}}$ x 100%

Ψ-Shaped Channel

Conclusions

- Both Y-shaped and Ψ-shaped channel guides provide high performance values (>90%)
- Performance can be improved upon increase of driving force and electric field angle
- Buffered channel closely replicates distribution of a Y-shaped channel

Acknowledgements

This work is supported by DOD Grant W911NF1810433