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Abstract

While topological spaces can be very ‘wild’, compactness introduces enough amount of finiteness to guarantee a much ‘tamer’ behavior. We would therefore expect
that the class of all compact spaces would have a nicer model-theoretic description, and this is indeed the case. It turns out that we can recover the topology on
each space just from the properties of the entire structure/category (=the class of all compact spaces and the continuous maps between them), as I will explain in
this poster. In particular, each structure/category contains a model of Peano Arithmetic, that is to say, it has its own version of the natural numbers.

Neighborhood

Q What does it mean that a function f has a local maximum at a point a?

A That in a neighborhood of a, the function f has lower values than at a.

Q But what does in a neighborhood mean?

A That depends on the topology you use!

Topology

Definition (Topology)
A topology on a set X consists of a collection of open sets, including X and ∅. The collection must be closed under finite
intersections and arbitrary unions. The complement of an open set is called closed.

Definition
A neighborhood N of a point a ∈ X is a subset containing an open U containing a.

Definition (Spaces)
A space is Hausdorff, if any two points have disjoint neighborhoods. Any set endowed with a Hausdorff topology is called a space.

Example

I On the real line, any interval without endpoints is open

I A neighborhood of a point P in the Cartesian plane is any set containing an open disk centered at
P .

I Any set becomes a discrete space, by declaring every subset open.

I For the Zariski topology on a variety, the closed subsets are just the subvarieties. However, this is
in general a non-Hausdorff topology.

Compact spaces

Definition
A collection of opens is said to cover a space X , if their union is equal to X . We say that X is compact, if in any covering already
finitely many can cover the space.

Example
I The closed unit interval is compact.

I The real line is not compact: the open intervals (n, n + 2), for n ∈ Z cover the line, but no finite sub-collection does.

I Any closed disk in the plane is compact.

I Any variety is compact; any closed manifold is compact.

I A discrete space is compact if and only if it is finite; in particular, the one-point space {∗} is compact.

The category of compact spaces

Definition (Continuity)
A map f : X → Y between spaces is called continuous, if the pre-image f −1(U) of any open U ⊆ Y is an open in X .

Example
I Any map between varieties given by polynomial equations is continuous.

I The characteristic function of a proper subset of the real line is not continuous.

Definition (Category)
A category is a collection of objects and morphisms between them. In the category of topological spaces, the objects are the spaces
and the morphisms are the continuous maps. We are interested in the subcategory of all compact spaces.

Example
I For any space, there is a unique morphism from the empty space into it; we say that the empty space is an initial object.

I Any space admits a unique morphism onto the one-point space {∗}; we say that {∗} is a terminal object.

I A category admits products, if there are morphisms X1 × X2 → Xi , such that any pair of morphisms Z → Xi factor through a
unique morphism Z → X1 × X2; if the arrows go the other way, we speak of a co-product and denote it X1 t X2.

The theory of compact spaces
Our goal is to generalize the category of compact spaces. The key fact is that the topology on any of its objects can be recovered
from the morphisms:

Fact
If X → Y is a morphism (=continuous map) of compact spaces, then the image of f is closed.

Definition (The first-order structure of spaces)
I Consider a structure T in which the elements are (formal) arrows X → Y ; the symbols X and Y are called respectively the

domain and co-domain of the arrow. Included are the ‘empty’ arrow ∅ and the ‘terminal arrow’ {∗} → {∗}. We also assume
that we can ‘compose’ compatible arrows X → Y and Y → Z , and that there are identity arrows 1X : X → X . We assume that
we can take products × and co-products t of arrows, and that every arrow has an ‘image’.

I Any arrow of the form X → {∗} will be called a space, and we will just denote it by X .

I We define a point of a space X as an arrow {∗} → X and we call the collection of all points |X | the underlying set of points.
Any arrow X → Y induces a map |X | → |Y | by composition, and we require that two arrows inducing the same map must be
equal.

I We define a ‘topology’ on |X | by taking for closed sets the images of arrows Y → X (and for opens the complements of
images). We require that any two points can be separated by opens.

Discrete spaces

Definition
Let X be a space. We call a point a ∈ |X | isolated, if {a} is open. We call X discrete, if every point is isolated.

SLOGAN: Discrete spaces behave like finite spaces!

Theorem (Discrete Pigeonhole Principle)
Any definable injective self-map on a discrete space is surjective, and conversely.

Compactness axiom: any definable open covering has a discrete subcovering.

Limits
Example
There is up to isomorphism exactly one countable compact topological space with a single non-isolated point, namely

I := {0, 1
2,

1
3,

1
4 . . . } ∼= [0, ω] (1)

where the latter is the one-point compactification of N. Moreover, any space with a single non-isolated point contains I .

We require that an I satisfying the latter condition exists in an arbitrary structure T . Moreover, we stipulate that a subset V ⊆ |X | is
closed if and only if any arrow I → X mapping the isolated points of I inside V should also map the unique non-isolated point in V .

The model of PA
Let us say that A ≤ B , for A and B discrete spaces if there is an arrow A→ B such that the underlying map is injective. In
particular, if a ∈ |A| is some point, then we can remove this point and the resulting discrete space is required to be strictly smaller.
Let PA be the collection of all isomorphism classes of discrete sets. Addition and multiplication of elements of PA are given by the
co-product and product respectively

A + B := A t B and A · B := A× B .

Definable completeness any non-empty definable collection of discrete spaces has a least element.

Main Theorem
The set PA is a model of Peano Arithmetic, that is to say, is a (non-standard) version of the natural numbers.

Main Theorem
Any (Cartesian) category of compact topological spaces is a structure satisfying the above axioms; these are the only structures for
which PA = N.

Puzzling Consequence
In the category of compact topological spaces, any subset is definable!

A question for topologists: Does compactness define cardinals?
Given a space X , let ιX be obtained from X by identifying all its non-isolated points. Let us say that a non-discrete space X is
T -countable if ιY ∼= I (see (1)), for any non-discrete subspace Y of X .

Conjecture
A compact topological space is T -countable if and only if it is countable.

Justification.
The converse implication holds, and any attempt to construct a counterexample to the other direction has so far failed!


