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Abstract

We propose an extension of the real-valued conjugate directions method for unconstrained

quadratic multiobjective problems. As in the single-valued counterpart, the procedure requires

a set of directions that are simultaneously conjugate with respect to the positive definite ma-

trices of all quadratic objective components. Likewise, the multicriteria version computes the

steplength bymeans of the unconstrainedminimization of a single-variable strongly convex func-

tion at each iteration. When it is implemented with a weakly-increasing (strongly-increasing)

auxiliary function, the scheme produces weak Pareto (Pareto) optima in finitely many iterations.

The Quadratic Single Objective Problem

Let Q ∈ Rn×n be positive definite and q ∈ Rn. Consider the quadratic function f : Rn → R by

f (x) = 1
2
xT Qx + qT x.

In this case the minimization problem is min
x∈Rn

f (x). Since f is strongly convex, the minimizer is

unique, say x∗.

For this problem, the following method is a classical one. It guarantees to find the minimizer in

at most n steps.

The Scalar Conjugate Directions Method

Goal: To solve min
x∈Rn

f (x), that is, to find x∗ ∈ Rn such that f (x∗) ≤ f (x) ∀x ∈ Rn.

Step 1: Choose Q-conjugate directions d0, d1, . . . , dn−1 in Rn, i.e.

〈di, dj〉Q = (di)T Qdj = 0 ∀i 6= j.

Step 2: Choose any x0 ∈ Rn.

Step 3: For k = 0, 1, . . . , n − 1, compute the steplenght,

tk = arg min
t∈R

f (xk + tdk),

and take

xk+1 = xk + tkdk.

The minimizer is x∗ = xn.

The Quadratic Multiobjective Problem

Let us consider the extension of the quadratic single objective problem to the following one.

Let Qi ∈ Rn×n be positive definite and qi ∈ Rn for i = 1, . . . , m. Consider the quadratic function

f = (f1, . . . , fm) : Rn → Rm given by

fi(x) = 1
2
xT Qix + (qi)T x,

for i = 1, . . . , m. Our problem is min
x∈Rn

f (x). The goal is to seek weak Pareto or Pareto optimal

points.

Pareto andWeak Pareto optimality

For u = (u1, . . . , um) and v = (v1, . . . , vm) in Rm, we have{
u ≤ v if ui ≤ vi for i = 1, . . . , m,

u < v if ui < vi for i = 1, . . . , m.

A point x∗ ∈ Rn is called a{
weak Pareto optimal solution if @ x ∈ Rn with f (x) < f (x∗),
Pareto optimal solution if @ x ∈ Rn with f (x) ≤ f (x∗) and f (x) 6= f (x∗).

Every Pareto optimal solution is weak Pareto.

Monotonic Functions

A mapping Φ : Rm → R is{
weakly increasing if Φ(u) < Φ(v) whenever u < v,

strongly increasing if Φ(u) < Φ(v) whenever u ≤ v and u 6= v.

Any strongly increasing function is weakly increasing.

Scalarization

Proposition: Let g : Rn → Rm, Φ : Rm → R, and x̄ ∈ arg min
x∈M⊂Rn

Φ
(
g(x)

)
.

1. If Φ is weakly increasing, then x̄ is a weak Pareto optimal solution for min
x∈M⊂Rn

g(x).

2. If Φ is strongly increasing, then x̄ is a Pareto optimal solution for min
x∈M⊂Rn

g(x).

General Assumption

Assumption E : There exists a Qi-conjugate Hamel basis {w0, . . . , wn−1} ⊂ Rn, where

Qi ⊂ Rn×n corresponds to fi for i = 1, . . . , m.

σi-relation

Definition

Let Q1 = P1D1P
T
1 , Q2, . . . , Qm ∈ Rn×n be positive definite where P1 is orthogonal and D1 is

diagonal. For 1 ≤ i ≤ m and 1 ≤ j ≤ n, let σi be a permutation on {1, . . . , n} and Iσi be the

matrix whose j-th column is the σi(j)-th column of the identity matrix I of order n. We say that

Qi is σi-related to Q1 if Qi = (P1Iσi)Di(P1Iσi)T for 1 ≤ i ≤ m.

Proposition: Let Q1 = P1D1P
T
1 , Q2, . . . , Qm ∈ Rn×n be positive definite where P1 is orthogonal

and D1 is diagonal. The following conditions are equivalent:

1. Each Qi is σi-related to Q1 for i = 1, . . . , m.

2. Q1, . . . , Qm are simultaneously diagonalizable, i.e. Qi = P1D̃iP
T
1 where P1 is orthogonal and

each D̃i is diagonal for i = 1, . . . , m.

3. Q1, . . . , Qm have the same eigenvectors, namely, P1e
1, . . . , P1e

n.

Furthermore, Assumption E holds under either one of these conditions.

The Multiobjective Conjugate Directions Method (weak MCDM version)

Goal: To find a weak Pareto solution x∗ ∈ Rn, that is, to find x∗ ∈ Rn such that there is no

x ∈ Rn such that f (x) < f (x∗).
Step 1: Choose Qi-conjugate directions w0, w1, . . . , wn−1 for i = 1, . . . , m, that is,

〈wr, ws〉Qi
= (wr)T Qiw

s = 0 ∀r 6= s, ∀i,

and take a continuous weakly increasing auxiliary function Φ : Rm → R such that Φ ◦ f is

strongly convex.

Step 2: Choose any x0 ∈ Rn.

Step 3: For k = 0, . . . , n − 1, compute the steplength,

tk = arg min
t∈R

Φ
(
f (xk + twk)

)
,

and take

xk+1 = xk + tkwk.

Remarks

Φ ◦ f : Rn → R decreases along {xk}k, i.e., we have

Φ
(
f (xk+1)

)
≤ Φ

(
f (xk)

)
for all k = 0, . . . , n − 1.
The strong version of MCDM is similar to the weak one: it suffices to take a continuous

strongly increasing auxiliary function Φ such that Φ ◦ f is strongly convex.

When m = 1, we retrieve the classical method.

Convergence Result

Theorem (Fukuda, Graña Drummond, Masuda - 2021)

Assume that {xk}k is generated by MCDM.

1. If MCDM is implemented with a weakly increasing auxiliary function Φ, then xn is a weak Pareto

optimal solution for problem min
x∈Rn

f (x).

2. If MCDM is implemented with a strongly increasing auxiliary function Φ, then xn is a Pareto

optimal solution for problem min
x∈Rn

f (x).

An ad hoc Example

By varying a parameter in the auxiliary function, MCDM furnishes the whole Pareto optimal set

and consequently the whole Pareto frontier. Let f : R → R2 defined by f (x) = (x2, x2 − 2x).

The set of Pareto optima is [0, 1]. We consider the family of auxiliary functions {Φω : R2 →
R}ω∈[0,2] defined by Φω(u) = max

i=1,2
{(u − ωe1)i}. The function Φω is continuous weakly increasing,

and Φω ◦ f : R → R is strongly convex. We apply MCDM with {w0} = {1} as the basis for

R, Φω for ω ∈ [0, 2], and x0 ∈ R. We obtain a family {x∗
ω}ω∈[0,2] of Pareto optima such that

{x∗
ω}ω∈[0,2] = [0, 1].

Final remarks

We propose a conjugate directions-type method for unconstrained quadratic multiobjective

problems. Essentially, the strategy consists of substituting the unconstrained multicriteria prob-

lem by a finite sequence of single-variable unconstrained scalar-valued convex optimization

problems, all with a single optimal solution. Depending on the chosen auxiliary function, the

procedure yields a weak Pareto or a Pareto optimum.

Our example suggests that it may be worth to investigate which classes of quadratic multiob-

jective problems are such that the scheme produces all optima by varying a parameter on the

auxiliary function. The fact that MCDP furnishes an unconstrained minimizer of Φ ◦ f (an ap-

parent limitation) may be a good starting point for characterizing the classes of problems whose

efficient frontier can be entirely computed. Another possible research direction is to explore

applications of the scheme to multiobjective problems that satisfy weaker conditions.
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