
      

   
 

 

 
        

       

     

 
    

     
    

 

 

   

   

  

  

 
   

      
 

 
     

             

  
     

 
    

      
 

    

    
       

     

     

    
   

 
  

      
  

 
   

   

     

  

 
 

  

        

  

     
     

          
  

 

    
       

  
            
 

 
 

      
 

     
 

   
  

 

       
 

   
      

 
 

  
   

  
    

   

      
 

 

       
         

        
              

                   
            

     
           

           
  

       

  

 
       

    

    
    

 

A Sinusoidal Twist with Exponential Influences 
Dr. Satyanand Singh 

Department of Mathematics, New York City College of Technology 

Abstract 
We show that the total distance traveled by an under-damped 
oscillating spring mass system with sinusoidal displacement 
results in a nice, closed-form expression. 

Motivation 
In this study the distance traveled by a mass in an under damped 
system was simulated with the Maple software. This is an im-
portant problem in physical and quantum systems in mathe-
matics and physics. The results touched upon an interaction 
between calculus and differential equations and provide am-
ple material for student projects and explorations . 

Preliminaries 
The second-order differential equation that models a spring-
mass system is usually encountered in a first course in ordi-
nary differential equations. The equation takes the form 

mu 00(t) + γu0(t) + cu(t) = F (t), (1) 

where u(t) is the displacement at time t, m is the mass, γ is 
the damping constant and c is the spring constant. 

The under-damped case with no external force, F (t) = 0, is 
most interesting as a mathematical model for applications in 
electrical, mechanical and quantum systems. In this case, 
F (t) = 0, the characteristic equation of (1), has the rootsp
(−γ ± γ2 − 4cm)/2m with γ2 −4cm < 0, and its displace-
ment is given by 

u(t) = e −γt/2m (A cos(µt) + B sin(µt)) 

or, equivalently, 

u(t) = Pe−γt/2m cos(µt − δ), 

√ 
where P = A2 + B2, tan(δ) = B/A, (the quadrant location 
of δ is determined based on the signs of A and B), γ > 0 andp 
µ = 4cm − γ2/2m > 0. 

Under-damped Oscillation 
The general shape of u(t) is illustrated below. 

u(t) 

tτ1 τ2 τ3 

P e−γt/2m 

−P e−γt/2m 

P cos δ 

Figure 1: Under-damped oscillation 

Parametrization 
Vertical displacements at the origin and the extreme values 
can be parametrized to find the distance traveled by the parti-
cle. The distance S traveled by the mass is given by Z ∞ q 

S = (0)2 + (u0(t))2 dt. 
0 

Computation with Maple 
The next step is to use Maple to calculate S when u(t) =� �−t t − π6e cos . Using the Maple code4 � �−t t − π u := t → 6 · e · cos :4 r� �2R ∞S := d u(t) dt;0 dt 

√ 
3 2(eπ + 1) 

S := . 
eπ − 1 

√ √2(eπ+1)It is an easy exercise to establish that 3 
= 3 2 coth (π/2). eπ−1 

Simulated Example 
We began work on the following example. The motion of a 
spring-mass system is described by the differential equation 
00(t) + 0.5uu 0(t) + 2u(t) = F (t), where u(t) is measured in 

feet and t in seconds. If u(0) = 2 ft and u0(0) = −1 ft/s, find 
the distance traveled by the mass as time approaches infin-
ity. We will experiment with F (t) = ktn , where k and n are 
nonnegative constants. In particular, we illustrate three cases, 
F (t) = 0, F (t) = 5, and F (t) = t respectively with the help 
of Maple software. 

Maple Results 
√ t �√ � �√ �− − t 

−2 31e 4 31t 31tCase I. u1(t) = sin + 2e 4 cos and31 4 4⎛ �√ �⎞ √ 31√ 31 arctan ⎜ 31π 15 ⎟
2⎝e 31 −1+2e 31 ⎠ 

S1 = √ 

e 
31π 
31 −1 

Case II. u2(t) = u1(t) + 5 and S1 = S2.2 

, 

Figure 2: u1(t) and u2(t) verses t. 

√ − t 
�√ � �√ � 

31e 4 31t 17 − t 31tCase III. u3(t) = − sin + 4 cos −8 4 8 e 4 
1 t 
8 + 2. 

Figure 3: u3(t) verses t. 

This shape suggests that the distance traveled by the mass is 
growing without bound. 

Theoretical Computation 
A spring mass system is described by the differential equa-

00(t) + ution u 0(t) + u(t) = 0, where u(t) is measured in 
feet and t in seconds. If u(0) = 1 ft and u0(0) = −1 ft/s, 
we will find the distance traveled by the mass as time ap-
proaches infinity by direct calculation. It can be shown that�√ � 

2 − t 3 π u(t) = √ e 2 cos 2 t + .63 

Figure 4: u(t) verses t. � � 
2πThe extreme values of u(t) occur at τn = √ n − 1 , and33 

2πits horizontal intercepts occur at tm = √ (3m − 2), where 
3 3 

n and m are positive integers. In the interval [0, t1] the mass 
will travel |u(0)|, in [t1, t2] it will travel 2|u(τ1)|, in [t2, t3] it 
will travel 2|u(τ2)| and so on. If we denote the distance by S, 
we get that 

S = |u(0)| + 2|u(τ1)| + 2|u(τ2)| + · · · 
√ √ 
3π 3π−2 −5 

= 1 + 2e 9 + 2e 9 + · · · 
√ 
3π−2 

2e 9 
= 1 + √ . 

− 3π 
1 − e 3 � � �� √ 

−2πWe can rewrite S equivalently as 1+ 1 + coth √ e 9
3π 

. 
2 3 

Main Result 
Theorem 1. For an under-damped spring mass system√with 
displacement u(t) = Pe−γt/2m cos(µt−δ), where P = A2 + B2, 
tan(δ) = B/A, (the quadrant location of δ is determinedp
based on the signs of A and B), γ > 0, µ = 4cm − γ2/2m > 

φ+δ+kπ 0 and τ1 = , where k = min{j : φ + δ + jπ > 0, j ∈ µ 
N}, the distance S traveled by the mass before coming to rest 
is given by the formulah i 
P | cos(φ)| (1 + coth (γπ/4mµ)) e−γτ1/2m − |cos(δ)| sgn (u(0)u(τ1)) . 

Corollary 
Corollary 1. If | cos(φ)| = | cos(δ)|, τ1 = π/µ and u(0)u(τ1) < 
0 then 

S = P | cos(φ)| coth (γπ/4mµ). 

Further Explorations 
One can simulate these results by creating various examples 
in an appropriate software. Pleym [3] illustrated animations 
of harmonic oscillations by the Maple V software and the pro-
grams written for Maple V can be adapted to current Maple 
versions. Our work was done with Maple 17. A proof of The-
orem 1 can be found in Singh [5]. 
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