Abstract

We show that the total distance traveled by an under-damped
oscillating spring mass system with sinusoidal displacement
results 1n a nice, closed-form expression.

Motivation

In this study the distance traveled by a mass in an under damped

system was simulated with the Maple software. This 1s an 1m-
portant problem in physical and quantum systems in mathe-
matics and physics. The results touched upon an interaction
between calculus and differential equations and provide am-
ple material for student projects and explorations .

Preliminaries

The second-order differential equation that models a spring-
mass system 1s usually encountered in a first course in ordi-
nary differential equations. The equation takes the form

mu” (t) + yu'(t) + cu(t) = F(t), (1)

where u(t) is the displacement at time ¢, m is the mass, 7 is
the damping constant and c 1s the spring constant.

The under-damped case with no external force, F'(t) = 0, is
most interesting as a mathematical model for applications in
electrical, mechanical and quantum systems. In this case,
F(t) = 0, the characteristic equation of (1), has the roots
(—y £+ /72 — 4em) /2m with 42 —4em < 0, and its displace-
ment 1s given by

u(t) = e t/2m (A cos(ut) + Bsin(ut))
or, equivalently,

u(t) = Pe 2 cog(ut — 8),

where P = v/ A2 + B2, tan(§) = B/A, (the quadrant location
of 0 1s determined based on the signs of A and B), v > 0 and
1= +/4dem —~42/2m > 0.

Under-damped Oscillation

The general shape of u(t) is illustrated below.
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Figure 1: Under-damped oscillation
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Parametrization

Vertical displacements at the origin and the extreme values
can be parametrized to find the distance traveled by the parti-
cle. The distance .S traveled by the mass is given by

S = /OOO \/(0)2 + (u/(t))2 dt.

Computation with Maple

The next step is to use Maple to calculate S when u(t) =
6e " cos (t — 7). Using the Maple code

u::t%G-e_t-cos(t—%):

S = [° \/(%u(t))th;
_ 3v2(e™ + 1).

e™ — 1

S :

[t is an easy exercise to establish that VAT 3v/2 coth (7/2).

Simulated Example

We began work on the following example. The motion of a
spring-mass system 1s described by the differential equation
u(t) + 0.5u/(t) + 2u(t) = F(t), where u(t) is measured in
feet and ¢ in seconds. If u(0) = 2 ft and v/(0) = —1 ft/s, find
the distance traveled by the mass as time approaches infin-
ity. We will experiment with F'(t) = kt", where k and n are
nonnegative constants. In particular, we 1llustrate three cases,
F(t) =0, F(t) = 5, and F'(t) = t respectively with the help
of Maple software.

Maple Results
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Case II. u2(t) = ul(t) + 3 and S1 = S2.
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Figure 2: u1(t) and u2(t) verses t.
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Figure 3: u3(t) verses t.

This shape suggests that the distance traveled by the mass is
growing without bound.

Theoretical Computation

A spring mass system 1s described by the differential equa-
tion u”(t) + u/(t) + w(t) = 0, where u(t) is measured in
feet and ¢ in seconds. If u(0) = 1 ft and v/(0) = —1 ft/s,
we will find the distance traveled by the mass as time ap-
proaches infinity by direct calculation. It can be shown that

t
u(t) = \%6_5 COS (%gt + %)
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Figure 4: u(t) verses t.

The extreme values of u(t) occur at 7, = 277% (n - %), and
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n and m are positive integers. In the interval |0, ;| the mass
will travel |u(0)|, in [t1, to] it will travel 2|u(7y)|, in |t9, t3] it
will travel 2|u()| and so on. If we denote the distance by .5,
we get that

its horizontal intercepts occur at ¢, = (3m — 2), where

S = |w(0)] + 2[u(r)] + 2Ju(m)] + - -
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We can rewrite S equivalently as 1+ (1 + coth ( T )) e~ 5",
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Main Result

Theorem 1. For an under-damped spring mass system with

displacement u(t) = Pe~7t/2M cos(put—8), where P = /A2 + B2,

tan(0) = B/A, (the quadrant location of § is determined
based on the signs of Aand B), v > 0, u = \/4cm — 2 /2m >
0 and 7 = ¢+5+k7r, where k =min{j : ¢+ + jm > 0,5 €
N}, the distance S traveled by the mass before coming to rest
is given by the formula

P [y cos(8)] (1 + coth (v /dmp)) e~ ¥7/2m _ |cos(8)| sen (u(O)u(ﬁ))} .

Corollary

Corollary 1. If | cos(¢)| = | cos(d)
0 then

, 71 =7/pand u(0)u(m) <

S = P|cos(¢)| coth (ym/dmpu).

Further Explorations

One can simulate these results by creating various examples
in an appropriate software. Pleym [3] illustrated animations
of harmonic oscillations by the Maple V software and the pro-
grams written for Maple V can be adapted to current Maple
versions. Our work was done with Maple 17. A proof of The-
orem 1 can be found in Singh [5].
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