The multi-dimensional realm of Feynman Integrals

Abstract

The understanding of our Universe at the smallest scales, and the interaction among fundamental particles that populate them, relies on the understanding of their symmetries. The mathematical language that we use to describe such interactions should indeed reflect the same structures. Within this framework, the study of Feynman integrals allows us to go beyond its traditional role of the standard computational technique in perturbation theory and becomes an extraordinary
tool to explore the symmetries of our particle physics models. tool to explore the symmetries of our particle physics models. In our poster, we discuss various parametrizations of Feynman Integrals and their specific features.
By choosing different parametrizations, we do not simply choose different variables to represent the By choosing different parametrizations, we do not simply choose different variablesto represent the
same multi-dimensional integrals, but we explore different faceets of the underlving mathematical structures of scattering amplitudes.

Feynman Integrals and Momentum Parametrization
A scattering amplitude is given in a diagram form \rightarrow Feynman diagrams:

$$
l) \mapsto \int\left(d^{d} \frac{N(l)}{D_{1} D_{2} D_{3} D_{4}}\right.
$$

This translation can be achieved by means of Feynman rules associated with the theoretical model. It is well-known that we can decompose a Feynman Integral into a linear combination of scalar It is well-known that we can decompose a Feynman Integral into a linear combin
integrals. $[8,9,10,6,4]$ We, therefore, consider a family of L-loops scalar integrals

$$
I(\vec{\nu}):=\prod_{a=1}^{L}\left(\int\left(\frac{d^{d} l_{a}}{(2 \pi)^{d}}\right) \frac{1}{p_{1}^{\nu_{1}} \cdots D_{N}^{\nu_{N}^{N}}}\right.
$$

Baikov Parametrization

Under the integration variable chang

$$
\left(l_{1}, \cdots, l_{L}\right) \mapsto\left(D_{1}, \cdots, D_{N}\right),
$$

we obtain $[2,4]$ the following parametrization:

$$
I(\vec{\nu}) \sim \int\left(\frac{d D_{1} \cdots d D_{N}}{D_{1}^{\nu_{1} \cdots D_{N}^{N N}}} P^{\frac{d-L-E-1}{2}}\right.
$$

where P is the Jacobi determinant of this variable change

$$
P=\operatorname{det}\left[q_{i} \cdot q_{j}\right]\left(D_{1}, \cdots, D_{N}\right)
$$

that is, the determinant of scalar products expressed as a polynomial of denominators, and this P is called the Baikov polynomial. The integration domain is determined by the zeros of P P and the integration domain do not depend on the indices ν_{1}, \cdots, ν_{N}, so the family of integrals are characterized by a polynomial P.

Acknowledgements

This project has been supported in its early stages by the National Science Grant PHY-1417354 and more recently by the PSC-CUNY Award $62322-00-50$.

 We would like to thank Andrea Ferroglia, Hjalte Frellesvig, Federico Gasparotto, Manoj K. Mandal, Pierpaolo Mastrolia, and Luca Mattiazzi, for fruitful discussions on many of the topics presented in this poster.
Lee-Pomeransky Parametrization

We can show the scalar integrals becomes

$$
I(\vec{\nu}) \sim \prod_{a=1}^{N} \iiint^{\infty} \frac{d x_{a} v_{a}-1}{\Gamma\left(\nu_{a}\right)} \mathcal{G}^{-d / 2}
$$

of Lee-Pomeransky parametrization [5], where Lee-Pomeransky polynomial $\mathcal{G}:=\mathcal{U}+\mathcal{F}$
and two graph polynomials are defined graph-theoretically; \mathcal{U} is the chord-set product of the underlying graph and \mathcal{F} can be build with 2 -tree product and the corresponding inner product of momenta. \mathcal{G} does not depend on indices or momenta labeling, and characterizes the family of integrals.
We can also show that these polynomials can be derived through graph-theoretically, $[7]$ i.e., they depend only on the Feynman graph. These polynomials, indeed, reflect the graph-theoretical symmetry of Feynman graph; for example, if the graph has swap symmetry of internal lines, the polynomials are symmetric under the corresponding parameters.

IBP-like identities over LP
Through the following functional:

$$
G_{i}(f)=\int\left(d x_{1} \ldots \int d x_{N} \partial_{i}\left[\cdot \mathcal{G}^{-\frac{d}{2}+1}\right](\right.
$$

we can build a set of linear equations: on the one hand, we
a linear combination of integrals with full N denominators:

 another linear combination of integrals that has no D_{i}

Other parametrizations, e.g., the defining momentum perrametrization and Baikov parametrization, have zero surface-terms. Lee-Pomeransky parametrization (in general Schwinger-Feynman-Lee-Pomeransky parametrizations) have, in general, non-zero surface term $[1,3]$

References

${ }^{[4]}$ A. G. Groxin. TIntegation hy parts. An Introduct
ction": In:

[7] Noboru Nakanishi. Graph theory and Feymman integruss: Gordon and Breach 1971.

Non-positive Indices with CIF and Dimension Shift
To better formulate the problem, let us begin by comparing the "kite" diagram:
/ (amomex
with the "glasses" diagram:

$$
\int\left(\frac{1}{D_{1} D_{3} D_{4} D_{5}} .\right.
$$

If we are to write this glasses integral in LP parametrization, we obtain

$$
I_{\text {glasses }}(1,1,1,1) \sim\left(\left(\prod_{\{(1,3,4}\left(\int_{5}\right)\left(_{k=0}^{\infty} d x_{a}\right)\right)_{\substack{-\frac{d}{12} \\-\text { gaseses }}},\right.
$$

where $\mathcal{G}_{\text {glasese }}$ is defined through the four denominator configuration. The same integral can be obtained by deleting D_{2} in the integrand of the kite diagram, i.e., by setting the index $\nu_{2}=0$ and, therefore, we can claim that the diagram belongs to the kite family:

$$
I\left(\nu_{1}, \nu_{2}, \nu_{3}, \nu_{4}, \nu_{5}\right) \sim \prod_{a=1}^{5}\left(\langle \int _ { k = 0 } ^ { \infty } \frac { d x _ { a } x _ { a } ^ { \nu _ { a } - 1 } } { \Gamma (\nu _ { a }) }) \left(\hat{l}_{\text {kite }}^{-\frac{d}{2}} .\right.\right.
$$

However, if we were to set $\nu_{2}=0$ in the expression above, we would immediately face some illbehaved factors, namely the appearance of a factor $1 / \Gamma(0)$ in front of our integral and the presence of x_{2}^{-1} in the integrand, which would lead to a divergent integral in x

Observe the fact $\left.\mathcal{G}_{\text {kite }}\right|_{x_{2}=0}=\mathcal{G}_{\text {glasses }}$ and it leads the followings; if we change he integration domain from the positive real axis to an infinitesimal small anti-clockwise circle around the origin in the complex plane:

$$
\int\left(\frac { d x _ { 2 } x _ { 2 } ^ { x - 1 } } { \Gamma (0) } \mathcal { G } _ { \text { kite } } \mapsto \frac { 1 } { 2 \pi i } \oint \left(\frac{d x_{2}}{x_{2}} \mathcal{G}_{\text {kite }}=\left.\mathcal{G}_{\text {kite }}\right|_{x_{2}=0}=\mathcal{G}_{\text {glasses }}\right.\right. \text {. }
$$

This is nothing but Cauchy's integral formula
We can further generalize this approach to represent diagrams in which a denominator D appears with negative indices ν, i.e., sits in the numerator of the Feynman Integral with power $n=-\nu$. Relying again on Cauchy's integral formula,

$$
\begin{aligned}
& D^{n}=(-)^{n} \frac{n!}{2 \pi i} \oint\left(\frac{d x}{x^{n+1}} \exp (-x D)=\left(\left(\frac{\partial}{\partial x}\right)^{n} \exp (-x D){ }_{x=0},\right.\right. \\
& \text { sto write the following replacement rule: }
\end{aligned}
$$

which allows us to write the following replacement rule:

$$
\int\left(\frac { d x _ { a } } { \Gamma (- n) x _ { a } ^ { n + 1 } } \mathcal { I } \mapsto (-) ^ { n } \frac { n ! } { 2 \pi i } \oint \left(\frac{d x_{a}}{x_{a}^{+1}} \mathcal{I}=(-)^{n} \frac{\partial^{n}}{\partial x_{a}^{n}} \mathcal{I} \quad x_{a}=0\right.\right.
$$

where \mathcal{I} stands for an arbitrary integrand.
As an example of application, let us consider:

$$
I_{\text {kite }}(1,-1,1,1,1) \gtrsim\left(\prod_{\{1,4,4}\left(\int_{2}^{\infty} \int_{(=0}^{\infty} d x_{a}\right)\right)\left(\int_{k=0}^{\infty} \frac{d x_{2} x_{2}^{-2}}{\Gamma(-1)} \mathcal{G}_{\text {kite }}^{-\frac{d}{2}},\right.
$$

which again contains worrisome features, such as the appearance of the factor $1 / \Gamma(-1)$ and the presence of the diverging x_{2}^{-2} in the integrand. However, employing the replacement rule, we can set

$$
\int_{\text {k }=0}^{\infty}=\frac{d x_{2} x_{2}^{-2}}{\Gamma(-1)} \mathcal{G}_{\text {kite }}^{-\frac{d}{2}} \mapsto(-1) \frac{\partial}{\partial x_{2}} \mathcal{G}_{\text {kite }}^{-\frac{d}{2}}{ }_{x_{2}=0}
$$

which, thanks to the fact that $\left.\mathcal{G}_{\text {kite }}\right|_{x_{2}=0}=\mathcal{G}_{\text {glasses }}$, leads to a well-defined linear combination of integrals in the family of $\mathcal{G}_{\text {glasses }}$

After applying ∂_{2} on $\mathcal{G}_{\text {kite }}^{-\frac{d}{2}}$, it reduces the power $-\frac{d}{2}$ by one and the outcome becomes as a polynomial of $\left(x_{1}, x_{3}, x_{4}, x_{5}\right)$ times $\mathcal{G}_{\text {glases }}^{-\frac{d}{2}-1}=\mathcal{G}_{\text {glaseres }}^{-\frac{d+2}{2}}$. Thus, we can identify them as a linear combination of
integrals in a shitted dimension $d \mapsto d+2$.

