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Abstract 

The understanding of our Universe at the smallest scales, and the interaction among fundamental 
particles that populate them, relies on the understanding of their symmetries. The mathematical 
language that we use to describe such interactions should indeed reflect the same structures. 
Within this framework, the study of Feynman integrals allows us to go beyond its traditional role 
of the standard computational technique in perturbation theory and becomes an extraordinary 
tool to explore the symmetries of our particle physics models. 
In our poster, we discuss various parametrizations of Feynman Integrals and their specific features. 
By choosing different parametrizations, we do not simply choose different variables to represent the 
same multi-dimensional integrals, but we explore different facets of the underlying mathematical 
structures of scattering amplitudes. 

Feynman Integrals and Momentum Parametrization 

A scattering amplitude is given in a diagram form → Feynman diagrams: 

l) 7→ 
Z 

ddl 
N(l) 

D1D2D3D4 

This translation can be achieved by means of Feynman rules associated with the theoretical model. 
It is well-known that we can decompose a Feynman Integral into a linear combination of scalar 
integrals. [8, 9, 10, 6, 4] We, therefore, consider a family of L-loops scalar integrals: 

I(~ν) := 
LY 

a=1 

Z 
ddla 

(2π)d 

! 
1 

Dν1 
1 · · · D

νN 
N 

. 

Baikov Parametrization 

Under the integration variable change 

(l1, · · · , lL) 7→ (D1, · · · , DN ), 

we obtain [2, 4] the following parametrization: 

I(~ν) ∼ 
Z 

dD1 · · · dDN 

Dν1 
1 · · · D

νN 
N 

P 
d−L−E−1 

2 

where P is the Jacobi determinant of this variable change 

P = det [qi · qj] (D1, · · · , DN ) 

that is, the determinant of scalar products expressed as a polynomial of denominators, and this 
P is called the Baikov polynomial. The integration domain is determined by the zeros of P . 
P and the integration domain do not depend on the indices ν1, · · · , νN , so the family of integrals 
are characterized by a polynomial P . 
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Lee-Pomeransky Parametrization 

We can show the scalar integrals becomes 

I(~ν) ∼ 
NY 
a=1 

Z ∞ 

0 

dxax
νa−1 

Γ(νa) 
G−d/2 

of Lee-Pomeransky parametrization [5], where Lee-Pomeransky polynomial 

G := U + F 

and two graph polynomials are defined graph-theoretically; U is the chord-set product of the 
underlying graph and F can be build with 2-tree product and the corresponding inner product 
of momenta. G does not depend on indices or momenta labeling, and characterizes the family 
of integrals. 
We can also show that these polynomials can be derived through graph-theoretically, [7] i.e., they 
depend only on the Feynman graph. These polynomials, indeed, reflect the graph-theoretical 
symmetry of Feynman graph; for example, if the graph has swap symmetry of internal lines, the 
polynomials are symmetric under the corresponding parameters. 

IBP-like identities over LP 

Through the following functional: 

Gi(f ) = 
Z 

dx1 . . . 
Z 

dxN ∂i 

h 
fG−d 

2+1 
i 
, 

we can build a set of linear equations: on the one hand, we apply the partial derivative to obtain 
a linear combination of integrals with full N denominators: 

Gi(f ) = 
Z 

dx1 . . . 
Z 

dxN ∂i 

h 
fG−d 

2+1 
i 

| {z } 
partial derivative 

, 

On the other hand, we use the fundamental theorem of calculus to associate this functional with 
the surface term; under dimensional regularization scheme, we can identify this surface term as 
another linear combination of integrals that has no Di: 

Gi(f ) = 

⎛ ⎝Y 
a6=i 

Z 
dxa 

⎞ ⎠ Z dxi∂i | {z } 
surface term 

h 
fG−d 

2+1 
i 
. 

Other parametrizations, e.g., the defining momentum parametrization and Baikov parametriza-
tion, have zero surface-terms. Lee-Pomeransky parametrization (in general Schwinger-Feynman-
Lee-Pomeransky parametrizations) have, in general, non-zero surface term [1, 3] 
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Non-positive Indices with CIF and Dimension Shift 

To better formulate the problem, let us begin by comparing the “kite” diagram: 

2 

1 5 

4 3 

∼ 
Z 

1 
D1D2D3D4D5 

. 

with the “glasses” diagram: 
1 

4 3 

5 
∼ 
Z 

1 
D1D3D4D5 

. 

If we are to write this glasses integral in LP parametrization, we obtain 

Iglasses(1, 1, 1, 1) ∼ 

⎛ ⎝ Y 
a∈{1,3,4,5} 

Z ∞ 

xa=0 
dxa 

⎞ ⎠G−d 
2 

glasses , 

where Gglasses is defined through the four denominator configuration. The same integral can be 
obtained by deleting D2 in the integrand of the kite diagram, i.e., by setting the index ν2 = 0, and, 
therefore, we can claim that the diagram belongs to the kite family: 

I(ν1, ν2, ν3, ν4, ν5) ∼ 
5Y 

a=1 

Z ∞ 

xa=0 

dxax
νa−1 
a 

Γ(νa) 

! 
G−d 

2 
kite . 

However, if we were to set ν2 = 0 in the expression above, we would immediately face some ill-
behaved factors, namely the appearance of a factor 1/Γ(0) in front of our integral and the presence 
of x2 

−1 in the integrand, which would lead to a divergent integral in x2: 

I(1, 0, 1, 1, 1) 
?∼ 

⎛ ⎝ Y 
a∈{1,3,4,5} 

Z ∞ 

xa=0 
dxa 

⎞ ⎠ Z ∞ 

x2=0 

dx2x2 
−1 

Γ(0) 
G−d 

2 
kite . 

Observe the fact Gkite|x2=0 = Gglasses and it leads the followings; if we change he integration domain 
from the positive real axis to an infinitesimal small anti-clockwise circle around the origin in the 
complex plane: Z 

dx2x −1 
2 

Γ(0) 
Gkite 7→ 

1 
2πi 

I 
dx2 

x2 
Gkite = Gkite|x2=0 = Gglasses . 

This is nothing but Cauchy’s integral formula. 

We can further generalize this approach to represent diagrams in which a denominator D appears 
with negative indices ν, i.e., sits in the numerator of the Feynman Integral with power n = −ν. 
Relying again on Cauchy’s integral formula, 

Dn = (−)n n! 
2πi 

I 
dx 
xn+1 

exp(−xD) = 

� 
− 

∂ 
∂x 

�n 

exp(−xD) 
x=0 

, 

which allows us to write the following replacement rule: Z 
dxa 

Γ(−n)xn+1 
a 

I 7→ (−)n n! 
2πi 

I 
dxa 

xn+1 
a 

I = (−)n ∂
n 

∂xn 
a 
I 

xa=0 

, 

where I stands for an arbitrary integrand. 

As an example of application, let us consider: 

Ikite(1, −1, 1, 1, 1) 
?∼ 

⎛ ⎝ Y 
a∈{1,3,4,5} 

Z ∞ 

xa=0 
dxa 

⎞ ⎠ Z ∞ 

x2=0 

dx2 x2 
−2 

Γ(−1) 
G−d 

2 
kite , 

which again contains worrisome features, such as the appearance of the factor 1/Γ(−1) and the 
presence of the diverging x2 

−2 in the integrand. However, employing the replacement rule, we can 
set Z ∞ 

x2=0 

dx2 x2 
−2 

Γ(−1) 
G−d 

2 
kite 7→ (−1) 

∂ 
∂x2 

G−d 
2 

kite 
x2=0 

, 

which, thanks to the fact that Gkite|x2=0 = Gglasses, leads to a well-defined linear combination of 
integrals in the family of Gglasses. 

After applying ∂2 on G−d 
2 

kite, it reduces the power −
d 
2 by one and the outcome becomes as a polynomial 

of (x1, x3, x4, x5) times G−d 
2−1 

glasses = G−d+2 
2 

glasses. Thus, we can identify them as a linear combination of 
integrals in a shifted dimension d 7→ d + 2. 


