Rédei Permutations with Cycles of the Same Length
 Juliane Capaverde ${ }^{2}$, Ariane Masuda ${ }^{1}$, and Virgínia Rodrigues ${ }^{2}$
 ${ }^{1}$ Department of Mathematics, New York City College of Technology Departamento de Matemática Pura e Aplicada, Universidade Federal do Rio Grande do Sul

Abstract

Let \mathbb{F}_{q} be a finite field of odd characteristic. We study Rédei functions that induce permutations over $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$ whose cycle decomposition contains only cycles of length 1 and j, for an integer $j \geq 2$. When j is a prime number, we give necessary and sufficient conditions for a Rédei permutation of this type to exist over $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$, characterize Rédei permutations consisting of 1and j-cycles, and determine their total number. We also present explicit formulas for Rédei involutions based on the number of fixed points.

Functional Graphs

\checkmark Let S be a finite set and $f: S \rightarrow S$ be a mapping.

- The functional graph associated to f is a directed graph where the vertices are labelled by the elements of S, and a directed edge connects a vertex a with a vertex b if and only if $b=f(a)$.
Let \mathbb{F}_{q} be the finite field of order \boldsymbol{q}.

Example

\triangleright The functional graph of $f: \mathbb{F}_{7} \rightarrow \mathbb{F}_{7}$ defined by $f(x)=x^{2}$ is

\triangleright The functional graph of $g: \mathbb{F}_{7} \rightarrow \mathbb{F}_{7}$ defined by $g(x)=x^{2}+5$ is

The functional graphs of x^{2} and $x^{2}+5$ are not isomorphic.

Rédei Function

- Let $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right):=\mathbb{F}_{q} \cup\{\infty\}$.
- Write $(x+\sqrt{y})^{m}$ as $N(x, y)+D(x, y) \sqrt{y}$
- For a positive integer m and $a \in \mathbb{F}_{q}$, the Rédei function is
$R_{m, a}: P^{1}\left(\mathbb{F}_{q}\right) \rightarrow P^{1}\left(\mathbb{F}_{q}\right)$ where

$$
R_{m, a}(x)= \begin{cases}\frac{N(x, a)}{D(x, a)} & \text { if } D(x, a) \neq 0, x \neq \infty \\ \infty & \text { otherwise }\end{cases}
$$

The Isomorphism Problem

- We denote the functional graph of $R_{m, a}$ over $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$ by $\mathcal{G}(m, a, q)$.
- Problem: Find conditions on m, n, a, b, q such that $\mathcal{G}(m, a, q)$ is isomorphic to $\mathcal{G}(n, b, q)$.
- Our goal is to characterize permutation $R_{m, a}$ with 1- and j-cycles for a prime j.

The Graph Structure

- $\chi(a)=1$ if a is a square in $\mathbb{F}_{q^{\prime}}^{*}$, and -1 otherwise.

Theorem (Qureshi and Panario [2])

The Rédei function $R_{m, a}$ induces a permutation of $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$ if and only if $\operatorname{gcd}(m, q-\chi(a))=1$. In this case, we have the following decomposition in disjoint cycles:
$\mathcal{G}(m, a, q) \cong \bigoplus_{d \mid q-\chi(a)}\left\{\frac{\phi(d)}{o_{d}(m)} \times \operatorname{Cyc}\left(o_{d}(m)\right)\right\} \oplus(1+\chi(a)) \times\{\bullet\}$, where ϕ is the Euler's totient function, $O_{d}(m)$ is the order of m modulo d, and $\mathrm{Cyc}(c)$ denotes a c-cycle.

Main Results

Theorem (Capaverde, M., and Rodrigues [1], 2020)

Let p be an odd prime. There exists a Rédei permutation over $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$ with cycles of length 1 and p if and only if $q-1$ or $\boldsymbol{q}+1$ has a prime factor of the form $p k+1$ or is divisible by p^{2}.

Theorem (Capaverde, M., and Rodrigues [1], 2020)

Let p be an odd prime and M be the number of Rédei permutations over $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$ with cycles of length 1 and p with fixed parameter a. Then

$$
M= \begin{cases}p^{r}-1 & \text { if } p^{2} \nmid q-\chi(a) \\ p^{r+1}-1 & \text { if } p^{2} \mid q-\chi(a),\end{cases}
$$

where $r=\mid\left\{p^{\prime}\right.$ prime $\left.: p^{\prime} \equiv 1(\bmod p), p^{\prime} \mid q-\chi(a)\right\} \mid$.
Theorem (Capaverde, M., and Rodrigues [1], 2020)
Let $\nu_{p}(z)$ be the p-adic valuation of z. A Rédei permutation $R_{m, a}$ over $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$ is an involution with $d+\chi(a)+1$ fixed points if and only if d is even, $\nu_{2}(d) \in\left\{1, \nu_{2}(q-\chi(a))-1, \nu_{2}(q-\chi(a))\right\}$, and $\operatorname{gcd}(d,(q-\chi(a)) / d) \mid$ 2. In this case, $m \equiv k(q-\chi(a)) / d-1$ $(\bmod q-\chi(a))$, where k reduced modulo d equals
$\left\{\begin{array}{l}2\left(\frac{q-\chi(a)}{d}\right)^{\varphi(d)-1} \\ \left(\frac{q-\chi}{2 d}\right)^{\varphi(d)-1}+\frac{d}{2} \\ \left(\frac{q-\chi(a)}{2 d}\right)^{\varphi(d)-1},\end{array}\right.$

$$
\begin{cases}2\left(\frac{q-\chi(a)}{d}\right)^{\varphi(d)-1} & \text { if } \nu_{2}(d)=\nu_{2}(q-\chi(a)) \\ \left(\frac{q-\chi}{2 d}\right)^{\varphi(d)-1}+\frac{d}{2} & \text { if } \nu_{2}(d)=\nu_{2}(q-\chi(a))-1 \geq 1 \\ \left(\frac{q-\chi(a)}{2 d}\right)^{\varphi(d)-1},\left(\frac{q-\chi(a)}{2 d}\right)^{\varphi(d)-1}+\frac{d}{2} & \text { if } \nu_{2}(d)=1, \nu_{2}(q-\chi(a)) \geq 3\end{cases}
$$

Remarks

- The type of function under investigation is of interest in the construction of interleavers for turbo codes. In addition, involutions have cryptographic applications such as the design of S-boxes.
- In our paper, we also give procedures to construct Rédei permutations with a prescribed number of fixed points and j-cycles for $j \in\{3,4,5\}$.
- Our results allow us to find all Rédei functions whose functional graphs consist of fixed points and j-cycles where j is any prime number, without the aid of a computer, depending on the factorization of $q \pm 1$.

Example

Let $R_{m, a}$ be a Rédei permutation over \mathbb{F}_{125}. The following are all Rédei permutations with 1 - and j-cycles over $\mathbb{P}^{1}\left(\mathbb{F}_{125}\right)$, where j is prime. \triangleright when $\chi(a)=1: R_{123, a}$ has 4 fixed points and 612 -cycles; $R_{61, a}$ has 6 fixed points and 60 2-cycles; $R_{63, a}$ has 64 fixed points and 312 -cycles; $R_{m, a}$ has 6 fixed points and 403 -cycles when $m \in\{5,25\} ; R_{m, a}$ has 6 fixed points and 245 -cycles when $m \in\{33,97,101,109\}$.
\triangleright when $\chi(a)=-1: R_{125, a}$ has 2 fixed points and 62 2-cycles; $R_{71, a}$ has 14 fixed points and 56 2-cycles; $R_{55, a}$ has 18 fixed points and 542 -cycles; $R_{m, a}$ has 6 fixed points and 403 -cycles when $m \in\{25,67,79,121\} ; R_{m, a}$ has 18 fixed points and 363 -cycles when $m \in\{37,109\} ; R_{m, a}$ has 42 fixed points and 283 -cycles when $m \in\{43,85\}$.

Open Problems

- Find all Rédei permutations with 1 - and j-cycles when j is not prime
- Obtain closed formulas for m such that $R_{m, a}$ is a Rédei permutation with 1 - and j-cycles, $j \neq 2$.

References

[1] J. Capaverde, A. M. Masuda, and V. M. Rodrigues, Rédei permutations with cycles of the same length. Des. Codes Cryptogr. 88, 2561-2579 (2020).
[2] C. Qureshi and D. Panario, Rédei actions on finite fields and multiplication map in cyclic group, SIAM J. Discrete Math. 29(3), 1486-1503 (2015).

