Strategies for the Photoreduction of Tc-99 Pertechnetate to Low Valent Tc by Keggin Polyoxometalates Ivana Jovanovic¹, Colleen M.B. Gallagher², Ramsey Salcedo², Wayne W. Lukens Jr.⁴, Benjamin P. Burton-Pye³, Donna McGregor³ and Lynn C. Francesconi² ¹Department of Chemistry, New York City College of Technology, CUNY ²Department of Chemistry, Hunter College, CUNY ³Department of Chemistry, Lehman College, CUNY ⁴ Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley #### **ABSTRACT** Technetium-99 (99Tc) is a hazardous radiological contaminant, which in its predominant form of pertechnetate (TcO_4^-) is highly mobile in the environment. Most strategies for the removal of pertechnetate from the environment involve uptake and or absorption of pertechnetate using resins, clays, and cationic metal-organic frameworks. In this work, we investigate using the "plenary" Keggin polyoxometalates (POMs), $(XW_{12}O_{40}^{n-})(X = P, Si, Al, n = 3, 4, 5)$ as a photocatalyst to both reduce TcO_4 and stabilize the reduced Tc species. We report on the mechanism by which the reduction of Tc occurs and find that these POMs promote the reduction of TcO₄- from Tc^{VII} to lower valent states. X-ray absorption spectroscopy was used to confirm TcIV and TcV species. #### INTRODUCTION Figure 1. The plenary $XW_{12}O_{40}^{n-}$ (X = P, Si, Al, n = 3, 4, 5, (XW_{12}) which can bind lower valent Tc on the surface. X yellow, W blue, O red. ⁹⁹Tc (half-life of 2.1x10⁵ years) is a high yield product of uranium-235 fission, which can be found in used nuclear fuel, nuclear waste, and the groundwater and soils near some nuclear facilities. Identification of disposal strategies for ⁹⁹Tc are central to many nuclear energy problems facing the US. Our approach employs a single material POMs, XW₁₂ (Fig 1.) to reduce and sequester ⁹⁹Tc. POMs can be reversibly reduced using photocatalytic reduction in the presence of a sacrificial organic electron donor (SED). Figure 2. The general strategy for photocatalytic reduction process of TcO₄- by XW₁₂ - 1) XW₁₂ is promoted to an excited state by irradiation. - 2) The excited POM is reduced by a SED, 2-propanol. - The "reduced" POM transfers electrons to TcO₄ which is reduced to low-valent ⁹⁹Tc. - 4) Stabilization by the re-oxidized POM via: A) incorporation into a vacancy; B) binding to the surface of the POM; C) surface stabilization of Tc(0) by multiple POMs. #### **EXPERIMENTAL** XW_{12} was dissolved in 2 mL of 0.5 M H_2SO_4 , D_2O , IPA (2:1:1 v.) at pH =1.13, and TcO₄ was added. The sample was deoxygenated, stirred and irradiated: 1) exposed to sunlight (2 weeks), or 2) broad spectrum xenon lamp to mimic sunlight; 3) UV lamp (254 nm, 16h). POM POM Tc-POM complex Figure 3. Photocatalytic reaction with PW₁₂ and TcO_4 . The oxidized POM and TcO_4 are colorless. The reduced POM is blue in color. Addition of TcO_4 results in a redbrown Tc^{IV} complex. #### RESULTS AND DISCUSSION ### **Sunlight photoreduction** | POM/TcO ₄ ⁻ ratio | Tc ^{VII} | Tc ^v | Tc ^{IV} | Total reduced Tc ^[a] | |---|-------------------|-----------------|------------------|---------------------------------| | PW12; 10:1 | 0.17 (7) | 0.1 (2) | 0.7 (1) | 0.8 | | SiW12; 10:1 | 0.43 (5) | 0.0 (1) | 0.56 (8) | 0.56 | | AlW12; 10:1 | 0.72 (4) | 0.0 (1) | 0.28 (5) | 0.28 | | PW12; 20:1 | 0.07 (8) | 0.2 (2) | 0.7 (1) | 0.9 | | SiW12; 20:1 | 0.35 (6) | 0.0 (1) | 0.6 (1) | 0.6 | | AlW12; 20:1 | 0.63 (4) | 0.0 (1) | 0.37 (5) | 0.37 | [a] Reduced Tc represents the summation of TcV and TcIV. **Table 1.** X-ray Absorption Near Edge Structure, (XANES) Spectroscopy data: The most effective reductant is PW_{12} > $SiW_{12} > AIW_{12}$. Some amounts of TcO₄- remaining in solution. #### Mechanism of TcO₄ reduction | $POM^{n-} + hv \rightarrow POM^{*n-}$ | (1) | |---|-----| | $POM^{*n-} + HO^{i}Pr \rightarrow POM^{(n+1)-} + HO^{i}Pr^{**}$ | (2) | | $POM^{(n+1)-} + TcO_4^- \rightarrow POM^{n-} + TcO_4^{2-}$ | (3) | | $2~\text{TcO}_4{}^{2-} \rightarrow \text{TcO}_4{}^- + \text{Tc}^{\text{V}}$ | (4) | | $2 \text{ TcV} \rightarrow \text{TcO}_4^{2-} + \text{TcIV}$ | (5) | the rate-limiting step The charge dictated by the central heteroatom allows tuning of the reduction potentials to match the potentials of Tc(IV). #### Xenon lamp broad spectrum irradiation Figure 4. Instant thin layer chromatography (ITLC) data for PW_{12}/TcO_4^- at ratios of (A) 1:1, (B) 5:1, and (C) 10:1. Data shows increasing amount of reduced species (Rf = 0.9) with the increased amount of POM. #### **UV** Irradiation | Sample | TcO ₄ | Tc ^{IV} μO ₂ | TcO ₂ •2H ₂ O | |-------------------|------------------|----------------------------------|-------------------------------------| | PW ₁₂ | 0.06 (2) | 0.72 (9) | 0.22 (9) | | SiW ₁₂ | 0.07 (2) | 0.76 (8) | 0.18 (8) | | AlW ₁₂ | 0.12 (2) | 0.73 (8) | 0.15 (8) | **Table 2.** XANES data: XW_{12} reduce majority of TcO_4^- to Tc^{IV} . Tc^{IV} μ -oxo dimers are the most prevalent species. UV light irradiates directly into the W=O molecular orbital to promote the POM into the excited state and produces a larger amount of reduced Tc^{IV} species compared to the broad spectrum lamp. #### CONCLUSIONS The aim of this work involved investigating the potential of "plenary" Keggin POMs to photocatalytically reduce TcO_4^- and stabilize reduced Tc species. POMs have sites that can stabilize different Tc oxidation states and can be useful to understand the coordination chemistry of reduced Tc. We demonstrated photreductions where POMs dictate the Tc^{IV} and some Tc^V. These results pave the way for the investigation of solid-state materials for photocatalytic reduction of TcO₄⁻. ## **REFERENCES** Ivana Radivojevic Jovanovic*, Colleen M. B. Gallagher*, Ramsey Salcedo, Wayne W. Lukens, Jr, , Benjamin P. Burton-Pye, Donna McGregor, and Lynn C. Francesconi (*contributed equally), Eur. J. Inorg. Chem. **2020**, 2133–2142